Advertisements
Advertisements
प्रश्न
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
उत्तर
The equation of the family of circles in the second quadrant and touching the co-ordinate axes is
\[\left( x + a \right)^2 + \left( y - a \right)^2 = a^2 \]
\[ \Rightarrow x^2 + 2ax + a^2 + y^2 - 2ay + a^2 = a^2 \]
\[ \Rightarrow x^2 + 2ax + y^2 - 2ay + a^2 = 0 ..........(1)\]
where `a` is a parameter.
As this equation contains one parameter, we shall get a differential equation of first order.
Differentiating equation (1) with respect to x, we get
\[2x + 2a + 2y\frac{dy}{dx} - 2a\frac{dy}{dx} = 0\]
\[ \Rightarrow x + y\frac{dy}{dx} + a - a\frac{dy}{dx} = 0\]
\[ \Rightarrow \left( x + y\frac{dy}{dx} \right) + a\left( 1 - \frac{dy}{dx} \right) = 0\]
\[ \Rightarrow a = \frac{x + y\frac{dy}{dx}}{\frac{dy}{dx} - 1} ..........(2)\]
From (1) and (2), we get
\[x^2 + 2x\left( \frac{x + y\frac{dy}{dx}}{\frac{dy}{dx} - 1} \right) + y^2 - 2y\left( \frac{x + y\frac{dy}{dx}}{\frac{dy}{dx} - 1} \right) + \left( \frac{x + y\frac{dy}{dx}}{\frac{dy}{dx} - 1} \right)^2 = 0\]
\[ \Rightarrow x^2 \left( \frac{dy}{dx} - 1 \right)^2 + 2x\left( x + y\frac{dy}{dx} \right)\left( \frac{dy}{dx} - 1 \right) + y^2 \left( \frac{dy}{dx} - 1 \right)^2 - 2y\left( x + y\frac{dy}{dx} \right)\left( \frac{dy}{dx} - 1 \right) + \left( x + y\frac{dy}{dx} \right)^2 = 0\]
\[ \Rightarrow x^2 \left( \frac{dy}{dx} \right)^2 - 2 x^2 \left( \frac{dy}{dx} \right) + x^2 + 2x\left[ x\frac{dy}{dx} - x + y \left( \frac{dy}{dx} \right)^2 - y\frac{dy}{dx} \right] + y^2 \left[ \left( \frac{dy}{dx} \right)^2 - 2\frac{dy}{dx} + 1 \right] - 2y\left[ x\frac{dy}{dx} - x + y \left( \frac{dy}{dx} \right)^2 - y\frac{dy}{dx} \right] + x^2 + 2xy\frac{dy}{dx} + y^2 \left( \frac{dy}{dx} \right)^2 = 0\]
\[ \Rightarrow x^2 + 2xy\frac{dy}{dx} + y^2 \left( \frac{dy}{dx} \right)^2 = x^2 + 2xy + y^2 + \left( x^2 + 2xy + y^2 \right) \left( \frac{dy}{dx} \right)^2 \]
\[ \Rightarrow \left( x + y\frac{dy}{dx} \right)^2 = \left( x + y \right)^2 \left[ 1 + \left( \frac{dy}{dx} \right)^2 \right] \]
It is the required differential equation.
APPEARS IN
संबंधित प्रश्न
Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at origin.
Form the differential equation of the family of circles having centre on y-axis and radius 3 units.
For the curve y = 5x – 2x3, if x increases at the rate of 2 units/sec, then find the rate of change of the slope of the curve when x = 3
Show that the family of curves for which `dy/dx = (x^2+y^2)/(2x^2)` is given by x2 - y2 = cx
Form the differential equation from the following primitive where constants are arbitrary:
xy = a2
Form the differential equation from the following primitive where constants are arbitrary:
y = ax2 + bx + c
Find the differential equation of the family of curves y = Ae2x + Be−2x, where A and B are arbitrary constants.
Form the differential equation corresponding to y2 = a (b − x2) by eliminating a and b.
Form the differential equation corresponding to y2 − 2ay + x2 = a2 by eliminating a.
Form the differential equation of the family of curves represented by the equation (a being the parameter):
(2x + a)2 + y2 = a2
Form the differential equation of the family of curves represented by the equation (a being the parameter):
(x − a)2 + 2y2 = a2
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + (y − b)2 = 1
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y = ax3
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + y2 = ax3
Show that y = bex + ce2x is a solution of the differential equation, \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0\]
Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x\]
Find one-parameter families of solution curves of the following differential equation:-
\[\frac{dy}{dx} - y = \cos 2x\]
Find one-parameter families of solution curves of the following differential equation:-
\[x\frac{dy}{dx} + y = x^4\]
Find one-parameter families of solution curves of the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 \log x\]
The differential equation which represents the family of curves y = eCx is
Form the differential equation representing the family of curves y = mx, where m is an arbitrary constant.
Form the differential equation of the family of ellipses having foci on y-axis and centre at the origin.
Find the area of the region bounded by the curves (x -1)2 + y2 = 1 and x2 + y2 = 1, using integration.
Form the differential equation representing the family of curves y = e2x (a + bx), where 'a' and 'b' are arbitrary constants.
Form the differential equation representing the family of curves y = A sin x, by eliminating the arbitrary constant A.
Find the differential equation of the family of curves y = Ae2x + B.e–2x.
Form the differential equation of all circles which pass through origin and whose centres lie on y-axis.
Form the differential equation by eliminating A and B in Ax2 + By2 = 1
Find the equation of a curve passing through origin if the slope of the tangent to the curve at any point (x, y) is equal to the square of the difference of the abcissa and ordinate of the point.
Family y = Ax + A3 of curves is represented by the differential equation of degree ______.
The differential equation `y ("d"y)/("d"x) + "c"` represents: ______.
The differential equation of the family of curves x2 + y2 – 2ay = 0, where a is arbitrary constant, is ______.
Family y = Ax + A3 of curves will correspond to a differential equation of order ______.