Advertisements
Advertisements
प्रश्न
Form the differential equation corresponding to y2 = a (b − x2) by eliminating a and b.
उत्तर
The equation of the family of curves is \[y^2 = a\left( b - x^2 \right)\], .........(1)
Where \[a\text{ and }b\] are parameters.
This equation contains two arbitrary constants, so we shall get a differential equation of second order.
Differentiating equation (1) with respect to x, we get
\[2y\frac{dy}{dx} = - 2ax\] ............(2)
Differentiating equation (2) with respect to x, we get
\[\left( \frac{dy}{dx} \right)^2 + y\frac{d^2 y}{d x^2} = - a\] .............(3)
From (2) and (3), we get
\[y\frac{dy}{dx} = x\left[ \left( \frac{dy}{dx} \right)^2 + y\frac{d^2 y}{d x^2} \right]\]
It is the required differential equation.
APPEARS IN
संबंधित प्रश्न
Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.
Form the differential equation of the family of circles having centre on y-axis and radius 3 units.
Which of the following differential equation has y = x as one of its particular solution?
A. `(d^2y)/(dx^2) - x^2 (dy)/(dx) + xy = x`
B. `(d^2y)/(dx^2) + x dy/dx + xy = x`
C. `(d^2y)/(dx^2) - x^2 dy/dx + xy = 0`
D. `(d^2y)/(dx^2) + x dy/dx + xy = 0`
Form the differential equation representing the family of curves given by (x – a)2 + 2y2 = a2, where a is an arbitrary constant.
Form the differential equation of the family of circles in the first quadrant which touch the coordinate axes.
Show that the family of curves for which `dy/dx = (x^2+y^2)/(2x^2)` is given by x2 - y2 = cx
Form the differential equation from the following primitive where constants are arbitrary:
y2 = 4ax
Form the differential equation from the following primitive where constants are arbitrary:
y = cx + 2c2 + c3
Form the differential equation of the family of curves represented by the equation (a being the parameter):
(2x + a)2 + y2 = a2
Form the differential equation of the family of curves represented by the equation (a being the parameter):
(2x − a)2 − y2 = a2
Form the differential equation of the family of curves represented by the equation (a being the parameter):
(x − a)2 + 2y2 = a2
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
(x − a)2 − y2 = 1
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4a (x − b)
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y = eax
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Find one-parameter families of solution curves of the following differential equation:-
\[\frac{dy}{dx} + 3y = e^{mx}\], m is a given real number.
Find one-parameter families of solution curves of the following differential equation:-
\[\frac{dy}{dx} - y = \cos 2x\]
Find one-parameter families of solution curves of the following differential equation:-
\[x\frac{dy}{dx} + y = x^4\]
Find one-parameter families of solution curves of the following differential equation:-
\[\frac{dy}{dx} + y \cos x = e^{\sin x} \cos x\]
Find one-parameter families of solution curves of the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 \log x\]
Write the order of the differential equation representing the family of curves y = ax + a3.
Form the differential equation of the family of ellipses having foci on y-axis and centre at the origin.
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.
Form the differential equation representing the family of curves y = e2x (a + bx), where 'a' and 'b' are arbitrary constants.
The solution of the differential equation `2x * "dy"/"dx" y` = 3 represents a family of ______.
The differential equation representing the family of curves y = A sinx + B cosx is ______.
Form the differential equation by eliminating A and B in Ax2 + By2 = 1
Find the equation of a curve passing through (2, 1) if the slope of the tangent to the curve at any point (x, y) is `(x^2 + y^2)/(2xy)`.
Find the equation of the curve through the point (1, 0) if the slope of the tangent to the curve at any point (x, y) is `(y - 1)/(x^2 + x)`
Find the equation of a curve passing through the point (1, 1). If the tangent drawn at any point P(x, y) on the curve meets the co-ordinate axes at A and B such that P is the mid-point of AB.
The differential equation `y ("d"y)/("d"x) + "c"` represents: ______.
The differential equation representing the family of circles x2 + (y – a)2 = a2 will be of order two.
Form the differential equation of the family of hyperbola having foci on x-axis and centre at origin.