Advertisements
Advertisements
Question
Form the differential equation corresponding to y2 = a (b − x2) by eliminating a and b.
Solution
The equation of the family of curves is \[y^2 = a\left( b - x^2 \right)\], .........(1)
Where \[a\text{ and }b\] are parameters.
This equation contains two arbitrary constants, so we shall get a differential equation of second order.
Differentiating equation (1) with respect to x, we get
\[2y\frac{dy}{dx} = - 2ax\] ............(2)
Differentiating equation (2) with respect to x, we get
\[\left( \frac{dy}{dx} \right)^2 + y\frac{d^2 y}{d x^2} = - a\] .............(3)
From (2) and (3), we get
\[y\frac{dy}{dx} = x\left[ \left( \frac{dy}{dx} \right)^2 + y\frac{d^2 y}{d x^2} \right]\]
It is the required differential equation.
APPEARS IN
RELATED QUESTIONS
Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.
Form the differential equation representing the family of curves given by (x – a)2 + 2y2 = a2, where a is an arbitrary constant.
Form the differential equation from the following primitive where constants are arbitrary:
y2 = 4ax
Form the differential equation from the following primitive where constants are arbitrary:
xy = a2
Form the differential equation from the following primitive where constants are arbitrary:
y = ax2 + bx + c
Find the differential equation of the family of curves y = Ae2x + Be−2x, where A and B are arbitrary constants.
Find the differential equation of the family of curves, x = A cos nt + B sin nt, where A and B are arbitrary constants.
Form the differential equation corresponding to y2 − 2ay + x2 = a2 by eliminating a.
Form the differential equation of the family of curves represented by the equation (a being the parameter):
(2x + a)2 + y2 = a2
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + y2 = a2
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4ax
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
(x − a)2 − y2 = 1
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + y2 = ax3
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y = eax
Show that y = bex + ce2x is a solution of the differential equation, \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0\]
Find one-parameter families of solution curves of the following differential equation:-
\[\frac{dy}{dx} - y = \cos 2x\]
Find one-parameter families of solution curves of the following differential equation:-
\[\frac{dy}{dx} + y \cos x = e^{\sin x} \cos x\]
Find one-parameter families of solution curves of the following differential equation:-
\[e^{- y} \sec^2 y dy = dx + x dy\]
Write the differential equation representing family of curves y = mx, where m is arbitrary constant.
The family of curves in which the sub tangent at any point of a curve is double the abscissae, is given by
Find the area of the region bounded by the curves (x -1)2 + y2 = 1 and x2 + y2 = 1, using integration.
Form the differential equation representing the family of curves y = e2x (a + bx), where 'a' and 'b' are arbitrary constants.
Find the differential equation of the family of lines through the origin.
Find the equation of a curve passing through the point (1, 1) if the perpendicular distance of the origin from the normal at any point P(x, y) of the curve is equal to the distance of P from the x-axis.
The solution of the differential equation `2x * "dy"/"dx" y` = 3 represents a family of ______.
Form the differential equation of all circles which pass through origin and whose centres lie on y-axis.
Find the equation of a curve passing through origin and satisfying the differential equation `(1 + x^2) "dy"/"dx" + 2xy` = 4x2
Find the differential equation of system of concentric circles with centre (1, 2).
Family y = Ax + A3 of curves is represented by the differential equation of degree ______.
The differential equation of the family of curves x2 + y2 – 2ay = 0, where a is arbitrary constant, is ______.
Family y = Ax + A3 of curves will correspond to a differential equation of order ______.
The differential equation of the family of curves y2 = 4a(x + a) is ______.
Find the equation of the curve at every point of which the tangent line has a slope of 2x:
Form the differential equation of the family of hyperbola having foci on x-axis and centre at origin.