Advertisements
Advertisements
Question
Show that y = bex + ce2x is a solution of the differential equation, \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0\]
Solution
We have,
\[y = b e^x + c e^{2x}.........(1)\]
Differentiating both sides of equation (1) with respect to x, we get
\[\frac{dy}{dx} = b e^x + 2c e^{2x}...........(2)\]
Differentiating both sides of equation (2) with respect to x, we get
\[\frac{d^2 y}{d x^2} = b e^x + 4c e^{2x} \]
\[ = 3b e^x + 6c e^{2x} - 2b e^x - 2c e^{2x} \]
\[ = 3\left( b e^x + 2c e^{2x} \right) - 2\left( b e^x + c e^{2x} \right)\]
\[ = 3\frac{dy}{dx} - 2y ..........\left[\text{Using equations }\left( 1 \right)\text{ and }\left( 2 \right) \right]\]
\[\Rightarrow \frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0\]
Hence, the given function is the solution to the given differential equation.
APPEARS IN
RELATED QUESTIONS
Form the differential equation of the family of circles touching the y-axis at the origin.
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at origin.
For the curve y = 5x – 2x3, if x increases at the rate of 2 units/sec, then find the rate of change of the slope of the curve when x = 3
Form the differential equation of the family of curves represented by y2 = (x − c)3.
Find the differential equation of the family of curves, x = A cos nt + B sin nt, where A and B are arbitrary constants.
Form the differential equation corresponding to y2 = a (b − x2) by eliminating a and b.
Form the differential equation corresponding to y2 − 2ay + x2 = a2 by eliminating a.
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + (y − b)2 = 1
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
(x − a)2 − y2 = 1
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y = ax3
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + y2 = ax3
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x\]
Find one-parameter families of solution curves of the following differential equation:-
\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x}\]
Find one-parameter families of solution curves of the following differential equation:-
\[x\frac{dy}{dx} + y = x^4\]
Find one-parameter families of solution curves of the following differential equation:-
\[\left( x \log x \right)\frac{dy}{dx} + y = \log x\]
Find one-parameter families of solution curves of the following differential equation:-
\[e^{- y} \sec^2 y dy = dx + x dy\]
Find one-parameter families of solution curves of the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 \log x\]
The differential equation which represents the family of curves y = eCx is
The family of curves in which the sub tangent at any point of a curve is double the abscissae, is given by
Form the differential equation representing the family of curves y = mx, where m is an arbitrary constant.
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.
Form the differential equation representing the family of curves `y2 = m(a2 - x2) by eliminating the arbitrary constants 'm' and 'a'.
Form the differential equation representing the family of curves y = A sin x, by eliminating the arbitrary constant A.
Find the equation of a curve whose tangent at any point on it, different from origin, has slope `y + y/x`.
Find the equation of a curve passing through the point (1, 1) if the perpendicular distance of the origin from the normal at any point P(x, y) of the curve is equal to the distance of P from the x-axis.
Form the differential equation of all circles which pass through origin and whose centres lie on y-axis.
Find the equation of a curve passing through (2, 1) if the slope of the tangent to the curve at any point (x, y) is `(x^2 + y^2)/(2xy)`.
The differential equation `y ("d"y)/("d"x) + "c"` represents: ______.
Family y = Ax + A3 of curves will correspond to a differential equation of order ______.
The differential equation of the family of curves y2 = 4a(x + a) is ______.
Find the equation of the curve at every point of which the tangent line has a slope of 2x:
From the differential equation of the family of circles touching the y-axis at origin
Form the differential equation of the family of hyperbola having foci on x-axis and centre at origin.