English

Family y = Ax + A3 of curves is represented by the differential equation of degree ______. - Mathematics

Advertisements
Advertisements

Question

Family y = Ax + A3 of curves is represented by the differential equation of degree ______.

Options

  • 1

  • 2

  • 3

  • 4

MCQ
Fill in the Blanks

Solution

Family y = Ax + A3 of curves is represented by the differential equation of degree 1.

Explanation:

Given equation is y = Ax + A3

Differentiating both sides, we get

`("d"y)/("d"x)` = A which has degree 1.

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Differential Equations - Exercise [Page 196]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 9 Differential Equations
Exercise | Q 42 | Page 196

RELATED QUESTIONS

Form the differential equation of the family of ellipses having foci on y-axis and centre at origin.


Form the differential equation of the family of hyperbolas having foci on x-axis and centre at origin.


Form the differential equation of the family of circles having centre on y-axis and radius 3 units.

 

Form the differential equation of the family of circles in the first quadrant which touch the coordinate axes.


For the curve y = 5x – 2x3, if x increases at the rate of 2 units/sec, then find the rate of change of the slope of the curve when x = 3


Form the differential equation from the following primitive where constants are arbitrary:
xy = a2


Find the differential equation of the family of curves y = Ae2x + Be−2x, where A and B are arbitrary constants.


Form the differential equation corresponding to y2 = a (b − x2) by eliminating a and b.


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y = ax3


Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


For the differential equation xy \[\frac{dy}{dx}\] = (x + 2) (y + 2). Find the solution curve passing through the point (1, −1).


Find one-parameter families of solution curves of the following differential equation:-

\[\left( x \log x \right)\frac{dy}{dx} + y = \log x\]


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} - \frac{2xy}{1 + x^2} = x^2 + 2\]


Find one-parameter families of solution curves of the following differential equation:-

\[e^{- y} \sec^2 y dy = dx + x dy\]


The differential equation which represents the family of curves y = eCx is


The family of curves in which the sub tangent at any point of a curve is double the abscissae, is given by


Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.


Find the differential equation of the family of curves y = Ae2x + B.e–2x.


Find the equation of a curve whose tangent at any point on it, different from origin, has slope `y + y/x`.


Find the equation of a curve passing through (2, 1) if the slope of the tangent to the curve at any point (x, y) is `(x^2 + y^2)/(2xy)`.


Find the equation of the curve through the point (1, 0) if the slope of the tangent to the curve at any point (x, y) is `(y - 1)/(x^2 + x)`


Find the equation of a curve passing through the point (1, 1). If the tangent drawn at any point P(x, y) on the curve meets the co-ordinate axes at A and B such that P is the mid-point of AB.


The differential equation `y ("d"y)/("d"x) + "c"` represents: ______.


The differential equation of the family of curves x2 + y2 – 2ay = 0, where a is arbitrary constant, is ______.


Find the equation of the curve at every point of which the tangent line has a slope of 2x:


The area above the x-axis and under the curve `y = sqrt(1/x - 1)` for `1/2 ≤ x ≤ 1` is:


From the differential equation of the family of circles touching the y-axis at origin


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×