English

Find the Area of the Region Bounded by the Curves (X -1)2 + Y2 = 1 and X2 + Y2 = 1, Using Integration. - Mathematics

Advertisements
Advertisements

Question

Find the area of the region bounded by the curves (x -1)2 + y2 = 1 and x2 + y2 = 1, using integration.

Sum

Solution

The area bounded by the curves, (x – 1)2 + y2 = 1 and x2 + y 2 = 1, is represented by the shaded area as

On solving the equations, (x – 1)2 + y2 = 1 and x2 + y 2 = 1, we obtain the point of intersection as A`(1/2, sqrt3/2) and B(1/2, -sqrt3/2)`

It can be observed that the required area is symmetrical about x-axis.
∴ Area OBCAO = 2 × Area OCAO
We join AB, which intersects OC at M, such that AM is perpendicular to OC.
The coordinates of M are `(1/2, 0)`.

⇒ Area OCAD = Area OMAO + Area MCAM

= `[ int_0^(1/2) sqrt(1 - (x - 1)^2) dx + int_(1/2)^1 sqrt(1 - x^2 ) dx ]`

= `[ (x -1)/2 sqrt(1 - (x - 1)^2) + 1/2 sin^-1(x -1)]_0^(1/2) + [ x/2 sqrt(1 - x)^2 + 1/2 sin^-1 x]_(1/2)^1`

= `[ - 1/4 sqrt( 1 - (-1/2)^2) + 1/2 sin^-1(1/2 - 1) - 1/2 sin^-1 (-1)] + [1/2 sin^-1 - 1/4 sqrt(1 - (1/2)^2) - 1/2sin^-1 (1/2)]`

= `[- sqrt3/8 + 1/2(- pi/6) - 1/2 (- pi/2)] + [1/2(pi/2) - sqrt3/8 - 1/2(pi/6)]`

= `[-sqrt3/4 - pi/12 + pi/4 + pi/4 - pi/12 ]`

= `[-sqrt3/4 - pi/6 + pi/2]`

= `[2pi/6 - sqrt3/4]`

Therefore, required area OBCAO = `2 xx (2pi/6 - sqrt3/4 ) = (2pi/3 - sqrt3/2)` units

shaalaa.com
  Is there an error in this question or solution?
2018-2019 (March) 65/3/1

RELATED QUESTIONS

Form the differential equation of the family of circles touching the y-axis at the origin.


Form the differential equation of the family of circles having centre on y-axis and radius 3 units.

 

Form the differential equation of the family of curves represented by y2 = (x − c)3.


Form the differential equation corresponding to y = emx by eliminating m.


Find the differential equation of the family of curves y = Ae2x + Be−2x, where A and B are arbitrary constants.


Find the differential equation of the family of curves, x = A cos nt + B sin nt, where A and B are arbitrary constants.


Form the differential equation corresponding to y2 = a (b − x2) by eliminating a and b.


Form the differential equation of the family of curves represented by the equation (a being the parameter):
(2x + a)2 + y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4ax


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):

\[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\]

 


Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x\]


For the differential equation xy \[\frac{dy}{dx}\] = (x + 2) (y + 2). Find the solution curve passing through the point (1, −1).


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} - y = \cos 2x\]


Find one-parameter families of solution curves of the following differential equation:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x}\]


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} - \frac{2xy}{1 + x^2} = x^2 + 2\]


Form the differential equation representing the family of curves y = mx, where m is an arbitrary constant.


Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.


Form the differential equation representing the family of curves y = A sin x, by eliminating the arbitrary constant A.


Form the differential equation of all circles which pass through origin and whose centres lie on y-axis.


Form the differential equation by eliminating A and B in Ax2 + By2 = 1


The differential equation `y ("d"y)/("d"x) + "c"` represents: ______.


Family y = Ax + A3 of curves will correspond to a differential equation of order ______.


The differential equation representing the family of circles x2 + (y – a)2 = a2 will be of order two.


From the differential equation of the family of circles touching the y-axis at origin


Form the differential equation of the family of hyperbola having foci on x-axis and centre at origin.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×