मराठी

Find the Area of the Region Bounded by the Curves (X -1)2 + Y2 = 1 and X2 + Y2 = 1, Using Integration. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the area of the region bounded by the curves (x -1)2 + y2 = 1 and x2 + y2 = 1, using integration.

बेरीज

उत्तर

The area bounded by the curves, (x – 1)2 + y2 = 1 and x2 + y 2 = 1, is represented by the shaded area as

On solving the equations, (x – 1)2 + y2 = 1 and x2 + y 2 = 1, we obtain the point of intersection as A`(1/2, sqrt3/2) and B(1/2, -sqrt3/2)`

It can be observed that the required area is symmetrical about x-axis.
∴ Area OBCAO = 2 × Area OCAO
We join AB, which intersects OC at M, such that AM is perpendicular to OC.
The coordinates of M are `(1/2, 0)`.

⇒ Area OCAD = Area OMAO + Area MCAM

= `[ int_0^(1/2) sqrt(1 - (x - 1)^2) dx + int_(1/2)^1 sqrt(1 - x^2 ) dx ]`

= `[ (x -1)/2 sqrt(1 - (x - 1)^2) + 1/2 sin^-1(x -1)]_0^(1/2) + [ x/2 sqrt(1 - x)^2 + 1/2 sin^-1 x]_(1/2)^1`

= `[ - 1/4 sqrt( 1 - (-1/2)^2) + 1/2 sin^-1(1/2 - 1) - 1/2 sin^-1 (-1)] + [1/2 sin^-1 - 1/4 sqrt(1 - (1/2)^2) - 1/2sin^-1 (1/2)]`

= `[- sqrt3/8 + 1/2(- pi/6) - 1/2 (- pi/2)] + [1/2(pi/2) - sqrt3/8 - 1/2(pi/6)]`

= `[-sqrt3/4 - pi/12 + pi/4 + pi/4 - pi/12 ]`

= `[-sqrt3/4 - pi/6 + pi/2]`

= `[2pi/6 - sqrt3/4]`

Therefore, required area OBCAO = `2 xx (2pi/6 - sqrt3/4 ) = (2pi/3 - sqrt3/2)` units

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2018-2019 (March) 65/3/1

संबंधित प्रश्‍न

Form the differential equation of the family of circles touching the y-axis at the origin.


Form the differential equation representing the family of curves given by (x – a)2 + 2y2 = a2, where a is an arbitrary constant.


Form the differential equation of the family of curves represented by y2 = (x − c)3.


Form the differential equation from the following primitive where constants are arbitrary:
xy = a2


Form the differential equation corresponding to y2 − 2ay + x2 = a2 by eliminating a.


Form the differential equation corresponding to (x − a)2 + (y − b)2 = r2 by eliminating a and b.


Form the differential equation of the family of curves represented by the equation (a being the parameter):
 (x − a)2 + 2y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 − y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4a (x − b)

 


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + y2 = ax3


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y = eax


Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x\]


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} + 3y = e^{mx}\], m is a given real number.


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} + y \cos x = e^{\sin x} \cos x\]


Find one-parameter families of solution curves of the following differential equation:-

\[x \log x\frac{dy}{dx} + y = 2 \log x\]


Find one-parameter families of solution curves of the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 \log x\]


Write the order of the differential equation representing the family of curves y = ax + a3.


The differential equation which represents the family of curves y = eCx is


Form the differential equation representing the family of curves y = e2x (a + bx), where 'a' and 'b' are arbitrary constants.


Find the differential equation of the family of lines through the origin.


The solution of the differential equation `2x * "dy"/"dx" y` = 3 represents a family of ______.


Form the differential equation by eliminating A and B in Ax2 + By2 = 1


Find the differential equation of system of concentric circles with centre (1, 2).


Find the equation of a curve passing through (2, 1) if the slope of the tangent to the curve at any point (x, y) is `(x^2 + y^2)/(2xy)`.


Family y = Ax + A3 of curves will correspond to a differential equation of order ______.


The differential equation of the family of curves y2 = 4a(x + a) is ______.


Find the equation of the curve at every point of which the tangent line has a slope of 2x:


From the differential equation of the family of circles touching the y-axis at origin


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×