मराठी

Find the Area of the Triangle Whose Vertices Are (-1, 1), (0, 5) and (3, 2), Using Integration. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the area of the triangle whose vertices are (-1, 1), (0, 5) and (3, 2), using integration. 

आलेख
बेरीज

उत्तर

Let A (-1,1), B (0,5) and C (3,2)

The equation of line AB is

y -1 = `(5 -1)/(0+ 1) ("x"+1)`

y = `4"x" + 5`

The equation of line BC is

y - 5 = `(2 -5)/(3 -0) ("x" -0)`

y = `-"x"+5`

The equation of line CA is

y - 2 = `(1 -2)/(-1 -3) ("x" -3)`

y = `("x")/(4) + (5)/(4)`

Required area = Area of ΔABC

The equation of line CA is 

y - 2 = `(1 -2)/(-1 -3) ("x" -3)`

y = `("x")/(4) + (5)/(4)`

Required area = Area of ΔABC
= `int_-1^0 (4x + 5) dx + int_0^3 (- x + 5) dx - int_-1^3 ( x/4 + 5/4) dx`

= `[ 2x^2 + 5x ]_-1^0 + [ -x^2/2 + 5x ]_0^3 - [ x^2/8 + 5x/4 ]_-1^3`

= `3 + 21/2 - 39/8 - 9/8`

= `15/2` sq. units

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2018-2019 (March) 65/3/1

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Evaluate :`int_(pi/6)^(pi/3) dx/(1+sqrtcotx)`


Find the integrals of the function:

sin 3x cos 4x


Find the integrals of the function:

sin3 (2x + 1)


Find the integrals of the function:

sin 4x sin 8x


Find the integrals of the function:

`(sin^2 x)/(1 + cos x)`


Find the integrals of the function:

`(cos 2x - cos 2 alpha)/(cos x - cos alpha)`


Find the integrals of the function:

`1/(sin xcos^3 x)`


`int (sin^2x - cos^2 x)/(sin^2 x cos^2 x) dx` is equal to ______.


`int (e^x(1 +x))/cos^2(e^x x) dx` equals ______.


Find  `int dx/(x^2 + 4x + 8)`


Evaluate `int_0^(3/2) |x sin pix|dx`


Differentiate : \[\tan^{- 1} \left( \frac{1 + \cos x}{\sin x} \right)\] with respect to x .


Evaluate : \[\int\limits_0^\pi \frac{x \tan x}{\sec x \cdot cosec x}dx\] .


Find `int_  (sin "x" - cos "x" )/sqrt(1 + sin 2"x") d"x", 0 < "x" < π / 2 `


Find `int_  sin ("x" - a)/(sin ("x" + a )) d"x"`


Find `int_  (sin2"x")/((sin^2 "x"+1)(sin^2"x"+3))d"x"`


Find: `int_  (cos"x")/((1 + sin "x") (2+ sin"x")) "dx"`


Find: `intsqrt(1 - sin 2x) dx, pi/4 < x < pi/2`


Find `int "dx"/(2sin^2x + 5cos^2x)`


`int "e"^x (cosx - sinx)"d"x` is equal to ______.


`int (sin^6x)/(cos^8x) "d"x` = ______.


Evaluate the following:

`int ((1 + cosx))/(x + sinx) "d"x`


Evaluate the following:

`int sin^-1 sqrt(x/("a" + x)) "d"x`  (Hint: Put x = a tan2θ)


`int (x + sinx)/(1 + cosx) "d"x` is equal to ______.


`int sinx/(3 + 4cos^2x) "d"x` = ______.


The value of the integral `int_(1/3)^1 (x - x^3)^(1/3)/x^4  dx` is


`int (cos^2x)/(sin x + cos x)^2  dx` is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×