Advertisements
Advertisements
प्रश्न
Find the integrals of the function:
sin 4x sin 8x
उत्तर
Let `I = int sin 4x sin 8x`
`= 1/2 int 2 sin 4x sin 8x dx`
`= 1/2 int (cos 4x - cos 12 x) dx` ....[∵ 2 sin A sin B = cos (A - B) - cos (A + B)]
`= 1/2 [1/4 sin 4x - 1/12 sin 12 x] + C`
`= 1/8 [sin 4x - 1/3 sin 12 x] + C`
APPEARS IN
संबंधित प्रश्न
Find the integrals of the function:
sin 3x cos 4x
Find the integrals of the function:
cos 2x cos 4x cos 6x
Find the integrals of the function:
sin x sin 2x sin 3x
Find the integrals of the function:
`cos x/(1 + cos x)`
Find the integrals of the function:
sin4 x
Find the integrals of the function:
cos4 2x
Find the integrals of the function:
tan4x
Find the integrals of the function:
`1/(sin xcos^3 x)`
Find the integrals of the function:
`(cos 2x)/(cos x + sin x)^2`
Find the integrals of the function:
sin−1 (cos x)
Find the integrals of the function:
`1/(cos(x - a) cos(x - b))`
Find `int (sin^2 x - cos^2x)/(sin x cos x) dx`
Find `int dx/(x^2 + 4x + 8)`
Find `int (2x)/((x^2 + 1)(x^4 + 4))`dx
Differentiate : \[\tan^{- 1} \left( \frac{1 + \cos x}{\sin x} \right)\] with respect to x .
Find `int_ (sin "x" - cos "x" )/sqrt(1 + sin 2"x") d"x", 0 < "x" < π / 2 `
Find: `int_ (cos"x")/((1 + sin "x") (2+ sin"x")) "dx"`
Find: `intsqrt(1 - sin 2x) dx, pi/4 < x < pi/2`
Evaluate `int tan^8 x sec^4 x"d"x`
Find `int "dx"/(2sin^2x + 5cos^2x)`
Find `int x^2tan^-1x"d"x`
`int "dx"/(sin^2x cos^2x)` is equal to ______.
`int (sin^6x)/(cos^8x) "d"x` = ______.
Evaluate the following:
`int ((1 + cosx))/(x + sinx) "d"x`
Evaluate the following:
`int ("d"x)/(1 + cos x)`
Evaluate the following:
`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`
Evaluate the following:
`int sqrt(1 + sinx)"d"x`
Evaluate the following:
`int sin^-1 sqrt(x/("a" + x)) "d"x` (Hint: Put x = a tan2θ)
`int (x + sinx)/(1 + cosx) "d"x` is equal to ______.
The value of the integral `int_(1/3)^1 (x - x^3)^(1/3)/x^4 dx` is