Advertisements
Advertisements
प्रश्न
Find the integrals of the function:
tan4x
उत्तर
Let `I = int tan^4 x dx = int (sec^2 x - 1)^2 dx`
`= (sec^4 x - 2 sec^2 x + 1) dx`
`= int sec^4 x dx - 2 int sec^2 x dx + int 1 dx`
`= int sec^4 x dx - 2 tan x + x + C_1`
⇒ `I = I_1 - 2 tan x + x + C_1` ...(i)
Where `I_1 = intsec^4 x dx`
Now, `I_1 = int sec^4 x dx = int sec^2 x * sec^2 x dx`
`= int (1 + tan^2 x) sec^2 x dx.`
Put tan x = t
⇒ sec2 x dx = dt
∴ `I_1 = int (1 + t^2) dt = t = t^3/3 + C_2`
`= tan x + 1/3 tan^3 x + C_2` .....(ii)
From (i) and (iii), we have,
`I = tan x + 1/3 tan^3 x + C_2 - 2 tan x + x + C_1`
`= 1/3 tan^3 x - tan x + x + C`
APPEARS IN
संबंधित प्रश्न
Evaluate :`int_(pi/6)^(pi/3) dx/(1+sqrtcotx)`
Evaluate : `intsin(x-a)/sin(x+a)dx`
Find the integrals of the function:
sin 3x cos 4x
Find the integrals of the function:
sin x sin 2x sin 3x
Find the integrals of the function:
sin 4x sin 8x
Find the integrals of the function:
cos4 2x
Find the integrals of the function:
`(cos 2x - cos 2 alpha)/(cos x - cos alpha)`
Find the integrals of the function:
`(cos x - sinx)/(1+sin 2x)`
Find the integrals of the function:
`(cos 2x+ 2sin^2x)/(cos^2 x)`
Find the integrals of the function:
`1/(sin xcos^3 x)`
Find the integrals of the function:
sin−1 (cos x)
`int (e^x(1 +x))/cos^2(e^x x) dx` equals ______.
Find `int (sin^2 x - cos^2x)/(sin x cos x) dx`
Evaluate `int_0^pi (x sin x)/(1 + cos^2 x) dx`
Evaluate `int_0^(3/2) |x sin pix|dx`
Find `int (2x)/((x^2 + 1)(x^4 + 4))`dx
Differentiate : \[\tan^{- 1} \left( \frac{1 + \cos x}{\sin x} \right)\] with respect to x .
Evaluate : \[\int\limits_0^\pi \frac{x \tan x}{\sec x \cdot cosec x}dx\] .
Find `int_ (log "x")^2 d"x"`
Find: `int sec^2 x /sqrt(tan^2 x+4) dx.`
Find `int x^2tan^-1x"d"x`
`int "dx"/(sin^2x cos^2x)` is equal to ______.
`int (sin^6x)/(cos^8x) "d"x` = ______.
Evaluate the following:
`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`
Evaluate the following:
`int (sin^6x + cos^6x)/(sin^2x cos^2x) "d"x`
Evaluate the following:
`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`
Evaluate the following:
`int sin^-1 sqrt(x/("a" + x)) "d"x` (Hint: Put x = a tan2θ)
`int (x + sinx)/(1 + cosx) "d"x` is equal to ______.
`int sinx/(3 + 4cos^2x) "d"x` = ______.
The value of the integral `int_(1/3)^1 (x - x^3)^(1/3)/x^4 dx` is