Advertisements
Advertisements
प्रश्न
Find `int_ (log "x")^2 d"x"`
उत्तर
Let `I = int (log "x")^2 d"x"`
⇒ `I = int_ 1·(log "x")^2 d"x"`
⇒ `I = "x"·(log "x")^2 - int_ (2"x" log"x")/"x" d"x"`
⇒ `I = "x"·(log "x")^2 - I_1 + c_1` .....(i)
`I_1 = int_ 2·log "x"d"x"`
⇒ `I_1 = 2"x"· log"x"- 2 int_ "x"/"x" d"x"`
⇒ `I_1 = 2"x"·log "x" - 2"x" + c_2` .....(ii)
From (i) and (ii), we get
`I = "x"·(log "x")^2 - 2"x"·log "x"+ 2"x" + c_1 - c_2`
`I = "x"·(log "x")^2 - 2"x"·log "x"+ 2"x" + C` ...(where C = C1 - C2)
APPEARS IN
संबंधित प्रश्न
Evaluate :`int_(pi/6)^(pi/3) dx/(1+sqrtcotx)`
Find the integrals of the function:
cos 2x cos 4x cos 6x
Find the integrals of the function:
sin3 (2x + 1)
Find the integrals of the function:
`cos x/(1 + cos x)`
Find the integrals of the function:
`(cos 2x - cos 2 alpha)/(cos x - cos alpha)`
Find the integrals of the function:
`(cos x - sinx)/(1+sin 2x)`
Find the integrals of the function:
tan3 2x sec 2x
Find the integrals of the function:
`(cos 2x+ 2sin^2x)/(cos^2 x)`
Find the integrals of the function:
`1/(sin xcos^3 x)`
Find the integrals of the function:
`(cos 2x)/(cos x + sin x)^2`
`int (e^x(1 +x))/cos^2(e^x x) dx` equals ______.
Evaluate `int_0^pi (x sin x)/(1 + cos^2 x) dx`
Find `int (2x)/((x^2 + 1)(x^4 + 4))`dx
Find `int((3 sin x - 2) cos x)/(13 - cos^2 x- 7 sin x) dx`
Differentiate : \[\tan^{- 1} \left( \frac{1 + \cos x}{\sin x} \right)\] with respect to x .
Evaluate : \[\int\limits_0^\pi \frac{x \tan x}{\sec x \cdot cosec x}dx\] .
Find the area of the triangle whose vertices are (-1, 1), (0, 5) and (3, 2), using integration.
Find: `int_ (cos"x")/((1 + sin "x") (2+ sin"x")) "dx"`
Integrate the function `cos("x + a")/sin("x + b")` w.r.t. x.
Find: `intsqrt(1 - sin 2x) dx, pi/4 < x < pi/2`
Find `int "dx"/(2sin^2x + 5cos^2x)`
`int (sin^6x)/(cos^8x) "d"x` = ______.
Evaluate the following:
`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`
Evaluate the following:
`int sqrt(1 + sinx)"d"x`
`int (x + sinx)/(1 + cosx) "d"x` is equal to ______.