English

Find ∫ ( Log X ) 2 D X - Mathematics

Advertisements
Advertisements

Question

Find `int_  (log "x")^2 d"x"`

Sum

Solution

Let `I = int (log "x")^2 d"x"`

⇒ `I = int_  1·(log "x")^2 d"x"`

⇒ `I = "x"·(log "x")^2 - int_  (2"x" log"x")/"x" d"x"`

⇒ `I = "x"·(log "x")^2 - I_1 + c_1`                  .....(i)

`I_1 = int_  2·log "x"d"x"`

⇒ `I_1 = 2"x"· log"x"- 2 int_  "x"/"x" d"x"`

⇒ `I_1 = 2"x"·log "x" - 2"x" + c_2`                  .....(ii)

From (i) and (ii), we get

`I = "x"·(log "x")^2 - 2"x"·log "x"+ 2"x" + c_1 - c_2`

`I = "x"·(log "x")^2 - 2"x"·log "x"+ 2"x" + C`  ...(where C = C1 - C2)

shaalaa.com
  Is there an error in this question or solution?
2018-2019 (March) 65/3/1

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the integrals of the function:

sin2 (2x + 5)


Find the integrals of the function:

sin 3x cos 4x


Find the integrals of the function:

sin x sin 2x sin 3x


Find the integrals of the function:

`(sin^2 x)/(1 + cos x)`


Find the integrals of the function:

`(cos x -  sinx)/(1+sin 2x)`


Find the integrals of the function:

`(cos 2x+ 2sin^2x)/(cos^2 x)`


Find the integrals of the function:

`1/(sin xcos^3 x)`


Find the integrals of the function:

`(cos 2x)/(cos x + sin x)^2`


Find the integrals of the function:

sin−1 (cos x)


Find the integrals of the function:

`1/(cos(x - a) cos(x - b))`


`int (sin^2x - cos^2 x)/(sin^2 x cos^2 x) dx` is equal to ______.


`int (e^x(1 +x))/cos^2(e^x x) dx` equals ______.


Find `int (sin^2 x - cos^2x)/(sin x cos x) dx`


Evaluate `int_0^pi (x sin x)/(1 + cos^2 x) dx`


Find `int((3 sin x - 2) cos x)/(13 - cos^2 x- 7 sin x) dx`


Differentiate : \[\tan^{- 1} \left( \frac{1 + \cos x}{\sin x} \right)\] with respect to x .


Find `int_  (sin "x" - cos "x" )/sqrt(1 + sin 2"x") d"x", 0 < "x" < π / 2 `


Find `int_  (sin2"x")/((sin^2 "x"+1)(sin^2"x"+3))d"x"`


Find: `intsqrt(1 - sin 2x) dx, pi/4 < x < pi/2`


Find `int "dx"/(2sin^2x + 5cos^2x)`


Find `int x^2tan^-1x"d"x`


`int "e"^x (cosx - sinx)"d"x` is equal to ______.


`int (sin^6x)/(cos^8x) "d"x` = ______.


Evaluate the following:

`int ("d"x)/(1 + cos x)`


Evaluate the following:

`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`


Evaluate the following:

`int sin^-1 sqrt(x/("a" + x)) "d"x`  (Hint: Put x = a tan2θ)


The value of the integral `int_(1/3)^1 (x - x^3)^(1/3)/x^4  dx` is


`int (cos^2x)/(sin x + cos x)^2  dx` is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×