Advertisements
Advertisements
Question
Find the integrals of the function:
sin−1 (cos x)
Solution
Let `I - int sin^-1 (cos x) dx`
`int sin^-1 [sin (pi/2 - x)] dx`
`= int (pi/2 - x) dx`
`= pi/2 int dx - int x dx`
`= (pix)/2 - x^2/2 +C`
APPEARS IN
RELATED QUESTIONS
Evaluate :`int_(pi/6)^(pi/3) dx/(1+sqrtcotx)`
Evaluate : `intsin(x-a)/sin(x+a)dx`
Find the integrals of the function:
sin2 (2x + 5)
Find the integrals of the function:
sin 3x cos 4x
Find the integrals of the function:
cos 2x cos 4x cos 6x
Find the integrals of the function:
sin3 (2x + 1)
Find the integrals of the function:
sin 4x sin 8x
Find the integrals of the function:
cos4 2x
Find the integrals of the function:
`(cos 2x - cos 2 alpha)/(cos x - cos alpha)`
Find the integrals of the function:
`1/(sin xcos^3 x)`
Find the integrals of the function:
`(cos 2x)/(cos x + sin x)^2`
`int (e^x(1 +x))/cos^2(e^x x) dx` equals ______.
Find `int (sin^2 x - cos^2x)/(sin x cos x) dx`
Find `int dx/(x^2 + 4x + 8)`
Evaluate `int_0^(3/2) |x sin pix|dx`
Find `int (2x)/((x^2 + 1)(x^4 + 4))`dx
Find `int((3 sin x - 2) cos x)/(13 - cos^2 x- 7 sin x) dx`
Differentiate : \[\tan^{- 1} \left( \frac{1 + \cos x}{\sin x} \right)\] with respect to x .
Find `int_ (sin "x" - cos "x" )/sqrt(1 + sin 2"x") d"x", 0 < "x" < π / 2 `
Find `int_ sin ("x" - a)/(sin ("x" + a )) d"x"`
Find:
`int"dx"/sqrt(5-4"x" - 2"x"^2)`
Find: `int sec^2 x /sqrt(tan^2 x+4) dx.`
Evaluate `int tan^8 x sec^4 x"d"x`
Evaluate the following:
`int ((1 + cosx))/(x + sinx) "d"x`
Evaluate the following:
`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`
Evaluate the following:
`int (sin^6x + cos^6x)/(sin^2x cos^2x) "d"x`
Evaluate the following:
`int (cosx - cos2x)/(1 - cosx) "d"x`
`int (cos^2x)/(sin x + cos x)^2 dx` is equal to