Advertisements
Advertisements
Question
Find:
`int"dx"/sqrt(5-4"x" - 2"x"^2)`
Solution
`int"dx"/sqrt(5-4"x" - 2"x"^2)`
` = int "dx"/sqrt(2[5/2-2"x"-"x"^2]`
` =1/sqrt2int"dx"/sqrt(5/2 - 2"x" - "x"^2)`
` = 1/sqrt2 int"dx"/sqrt(5/2-("x"^2+2"x"))`
` = 1/sqrt2 int"dx"/sqrt(5/2 -("x"^2+2"x"+1-1))`
` = 1/sqrt2 int"dx"/sqrt(5/2 -("x"+1)^2+1`
` = 1/sqrt2 int"dx"/(7/2-("x"+1)^2)`
` = 1/sqrt2 int "dx"/sqrt((sqrt7/sqrt2)^2 - ("x"+1)^2)`
` = 1/sqrt2sin^-1((("x"+1)sqrt2)/sqrt7) + "C"`
` = 1/sqrt2sin^-1 (sqrt(2/7) ("x"+1)) + "C"`
APPEARS IN
RELATED QUESTIONS
Evaluate :`int_(pi/6)^(pi/3) dx/(1+sqrtcotx)`
Evaluate : `intsin(x-a)/sin(x+a)dx`
Find the integrals of the function:
sin 3x cos 4x
Find the integrals of the function:
cos 2x cos 4x cos 6x
Find the integrals of the function:
sin3 (2x + 1)
Find the integrals of the function:
sin3 x cos3 x
Find the integrals of the function:
`cos x/(1 + cos x)`
Find the integrals of the function:
`(cos x - sinx)/(1+sin 2x)`
Find the integrals of the function:
tan3 2x sec 2x
Find the integrals of the function:
`(cos 2x+ 2sin^2x)/(cos^2 x)`
Find the integrals of the function:
`(cos 2x)/(cos x + sin x)^2`
Find the integrals of the function:
sin−1 (cos x)
Find `int (sin^2 x - cos^2x)/(sin x cos x) dx`
Find `int dx/(x^2 + 4x + 8)`
Find `int((3 sin x - 2) cos x)/(13 - cos^2 x- 7 sin x) dx`
Evaluate : \[\int\limits_0^\pi \frac{x \tan x}{\sec x \cdot cosec x}dx\] .
Find `int_ (sin "x" - cos "x" )/sqrt(1 + sin 2"x") d"x", 0 < "x" < π / 2 `
Find `int_ (log "x")^2 d"x"`
Find `int_ (sin2"x")/((sin^2 "x"+1)(sin^2"x"+3))d"x"`
Find: `int_ (cos"x")/((1 + sin "x") (2+ sin"x")) "dx"`
Find: `int sec^2 x /sqrt(tan^2 x+4) dx.`
Find: `int sin^-1 (2x) dx.`
`int "dx"/(sin^2x cos^2x)` is equal to ______.
`int (sin^6x)/(cos^8x) "d"x` = ______.
Evaluate the following:
`int ("d"x)/(1 + cos x)`
Evaluate the following:
`int tan^2x sec^4 x"d"x`
`int (x + sinx)/(1 + cosx) "d"x` is equal to ______.