Advertisements
Advertisements
प्रश्न
Find:
`int"dx"/sqrt(5-4"x" - 2"x"^2)`
उत्तर
`int"dx"/sqrt(5-4"x" - 2"x"^2)`
` = int "dx"/sqrt(2[5/2-2"x"-"x"^2]`
` =1/sqrt2int"dx"/sqrt(5/2 - 2"x" - "x"^2)`
` = 1/sqrt2 int"dx"/sqrt(5/2-("x"^2+2"x"))`
` = 1/sqrt2 int"dx"/sqrt(5/2 -("x"^2+2"x"+1-1))`
` = 1/sqrt2 int"dx"/sqrt(5/2 -("x"+1)^2+1`
` = 1/sqrt2 int"dx"/(7/2-("x"+1)^2)`
` = 1/sqrt2 int "dx"/sqrt((sqrt7/sqrt2)^2 - ("x"+1)^2)`
` = 1/sqrt2sin^-1((("x"+1)sqrt2)/sqrt7) + "C"`
` = 1/sqrt2sin^-1 (sqrt(2/7) ("x"+1)) + "C"`
APPEARS IN
संबंधित प्रश्न
Find the integrals of the function:
sin 4x sin 8x
Find the integrals of the function:
`(1-cosx)/(1 + cos x)`
Find the integrals of the function:
`cos x/(1 + cos x)`
Find the integrals of the function:
sin4 x
Find the integrals of the function:
`(cos 2x - cos 2 alpha)/(cos x - cos alpha)`
Find the integrals of the function:
`(cos 2x+ 2sin^2x)/(cos^2 x)`
Find the integrals of the function:
`1/(sin xcos^3 x)`
Find the integrals of the function:
`(cos 2x)/(cos x + sin x)^2`
Find the integrals of the function:
sin−1 (cos x)
`int (sin^2x - cos^2 x)/(sin^2 x cos^2 x) dx` is equal to ______.
Find `int (sin^2 x - cos^2x)/(sin x cos x) dx`
Evaluate `int_0^pi (x sin x)/(1 + cos^2 x) dx`
Find `int((3 sin x - 2) cos x)/(13 - cos^2 x- 7 sin x) dx`
Find `int_ (sin "x" - cos "x" )/sqrt(1 + sin 2"x") d"x", 0 < "x" < π / 2 `
Find `int_ (log "x")^2 d"x"`
Find: `int_ (cos"x")/((1 + sin "x") (2+ sin"x")) "dx"`
Find: `int sin^-1 (2x) dx.`
`int "e"^x (cosx - sinx)"d"x` is equal to ______.
`int "dx"/(sin^2x cos^2x)` is equal to ______.
`int (sin^6x)/(cos^8x) "d"x` = ______.
Evaluate the following:
`int ((1 + cosx))/(x + sinx) "d"x`
Evaluate the following:
`int ("d"x)/(1 + cos x)`
Evaluate the following:
`int (sin^6x + cos^6x)/(sin^2x cos^2x) "d"x`
Evaluate the following:
`int sin^-1 sqrt(x/("a" + x)) "d"x` (Hint: Put x = a tan2θ)
`int (cos^2x)/(sin x + cos x)^2 dx` is equal to