Advertisements
Advertisements
प्रश्न
`int (sin^2x - cos^2 x)/(sin^2 x cos^2 x) dx` is equal to ______.
विकल्प
tan x + cot x + C
tan x + cosec x + C
− tan x + cot x + C
tan x + sec x + C
उत्तर
`int (sin^2x - cos^2 x)/(sin^2 x cos^2 x) dx` is equal to tan x + cot x + C.
Explanation:
Let I = `int (sin^2 x - cos^2 x)/(sin^2 x cos^2 x) dx`
`= int ((sin^2 x)/(sin^2 x cos^2 x) - (cos^2 x)/(sin^2 x cos^2 x))`
`= int (1/(cos^2 x) - 1/(sin^2 x)) dx`
`= int (sec^2 x - cosec^2 x) dx`
`= tan x + cot x + C`
APPEARS IN
संबंधित प्रश्न
Evaluate :`int_(pi/6)^(pi/3) dx/(1+sqrtcotx)`
Evaluate : `intsin(x-a)/sin(x+a)dx`
Find the integrals of the function:
sin2 (2x + 5)
Find the integrals of the function:
cos 2x cos 4x cos 6x
Find the integrals of the function:
sin3 x cos3 x
Find the integrals of the function:
sin x sin 2x sin 3x
Find the integrals of the function:
`(1-cosx)/(1 + cos x)`
Find the integrals of the function:
`cos x/(1 + cos x)`
Find the integrals of the function:
`(sin^2 x)/(1 + cos x)`
Find the integrals of the function:
`(cos 2x - cos 2 alpha)/(cos x - cos alpha)`
Find the integrals of the function:
`(cos x - sinx)/(1+sin 2x)`
Find the integrals of the function:
tan3 2x sec 2x
Find the integrals of the function:
`(cos 2x)/(cos x + sin x)^2`
Evaluate `int_0^pi (x sin x)/(1 + cos^2 x) dx`
Find `int (2x)/((x^2 + 1)(x^4 + 4))`dx
Find `int((3 sin x - 2) cos x)/(13 - cos^2 x- 7 sin x) dx`
Evaluate : \[\int\limits_0^\pi \frac{x \tan x}{\sec x \cdot cosec x}dx\] .
Find `int_ sin ("x" - a)/(sin ("x" + a )) d"x"`
Find: `int_ (cos"x")/((1 + sin "x") (2+ sin"x")) "dx"`
Find: `intsqrt(1 - sin 2x) dx, pi/4 < x < pi/2`
Find: `int sin^-1 (2x) dx.`
Evaluate `int tan^8 x sec^4 x"d"x`
Find `int x^2tan^-1x"d"x`
`int "dx"/(sin^2x cos^2x)` is equal to ______.
`int (sin^6x)/(cos^8x) "d"x` = ______.
Evaluate the following:
`int ((1 + cosx))/(x + sinx) "d"x`
Evaluate the following:
`int tan^2x sec^4 x"d"x`