Advertisements
Advertisements
प्रश्न
Find: `intsqrt(1 - sin 2x) dx, pi/4 < x < pi/2`
उत्तर
`I = int sqrt(1 - sin 2x) dx`
`I = int sqrt(sin^2 x + cos^2 x - 2sin x cos x) dx`
`I = int (sin x - cos x )dx`
`I = int sin x dx - int cos x dx`
`I = -cos x - sin x + "C"`
APPEARS IN
संबंधित प्रश्न
Evaluate : `intsin(x-a)/sin(x+a)dx`
Find the integrals of the function:
cos 2x cos 4x cos 6x
Find the integrals of the function:
sin3 x cos3 x
Find the integrals of the function:
`(1-cosx)/(1 + cos x)`
Find the integrals of the function:
sin4 x
Find the integrals of the function:
tan4x
Find the integrals of the function:
`(cos 2x+ 2sin^2x)/(cos^2 x)`
`int (sin^2x - cos^2 x)/(sin^2 x cos^2 x) dx` is equal to ______.
`int (e^x(1 +x))/cos^2(e^x x) dx` equals ______.
Find `int (sin^2 x - cos^2x)/(sin x cos x) dx`
Find `int dx/(x^2 + 4x + 8)`
Evaluate `int_0^pi (x sin x)/(1 + cos^2 x) dx`
Find `int (2x)/((x^2 + 1)(x^4 + 4))`dx
Differentiate : \[\tan^{- 1} \left( \frac{1 + \cos x}{\sin x} \right)\] with respect to x .
Find `int_ sin ("x" - a)/(sin ("x" + a )) d"x"`
Find the area of the triangle whose vertices are (-1, 1), (0, 5) and (3, 2), using integration.
Find:
`int"dx"/sqrt(5-4"x" - 2"x"^2)`
Integrate the function `cos("x + a")/sin("x + b")` w.r.t. x.
`int "e"^x (cosx - sinx)"d"x` is equal to ______.
`int (sin^6x)/(cos^8x) "d"x` = ______.
Evaluate the following:
`int tan^2x sec^4 x"d"x`
Evaluate the following:
`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`
Evaluate the following:
`int (cosx - cos2x)/(1 - cosx) "d"x`
Evaluate the following:
`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`
Evaluate the following:
`int sin^-1 sqrt(x/("a" + x)) "d"x` (Hint: Put x = a tan2θ)
`int (x + sinx)/(1 + cosx) "d"x` is equal to ______.