Advertisements
Advertisements
प्रश्न
Find the integrals of the function:
tan4x
उत्तर
Let `I = int tan^4 x dx = int (sec^2 x - 1)^2 dx`
`= (sec^4 x - 2 sec^2 x + 1) dx`
`= int sec^4 x dx - 2 int sec^2 x dx + int 1 dx`
`= int sec^4 x dx - 2 tan x + x + C_1`
⇒ `I = I_1 - 2 tan x + x + C_1` ...(i)
Where `I_1 = intsec^4 x dx`
Now, `I_1 = int sec^4 x dx = int sec^2 x * sec^2 x dx`
`= int (1 + tan^2 x) sec^2 x dx.`
Put tan x = t
⇒ sec2 x dx = dt
∴ `I_1 = int (1 + t^2) dt = t = t^3/3 + C_2`
`= tan x + 1/3 tan^3 x + C_2` .....(ii)
From (i) and (iii), we have,
`I = tan x + 1/3 tan^3 x + C_2 - 2 tan x + x + C_1`
`= 1/3 tan^3 x - tan x + x + C`
APPEARS IN
संबंधित प्रश्न
Evaluate :`int_(pi/6)^(pi/3) dx/(1+sqrtcotx)`
Evaluate : `intsin(x-a)/sin(x+a)dx`
Find the integrals of the function:
sin2 (2x + 5)
Find the integrals of the function:
sin 3x cos 4x
Find the integrals of the function:
cos 2x cos 4x cos 6x
Find the integrals of the function:
sin3 (2x + 1)
Find the integrals of the function:
sin x sin 2x sin 3x
Find the integrals of the function:
`(1-cosx)/(1 + cos x)`
Find the integrals of the function:
`cos x/(1 + cos x)`
Find the integrals of the function:
cos4 2x
Find the integrals of the function:
`(cos 2x - cos 2 alpha)/(cos x - cos alpha)`
Find the integrals of the function:
tan3 2x sec 2x
Find the integrals of the function:
`(sin^3 x + cos^3 x)/(sin^2x cos^2 x)`
Find the integrals of the function:
`1/(sin xcos^3 x)`
Find the integrals of the function:
`1/(cos(x - a) cos(x - b))`
`int (e^x(1 +x))/cos^2(e^x x) dx` equals ______.
Evaluate `int_0^pi (x sin x)/(1 + cos^2 x) dx`
Find `int (2x)/((x^2 + 1)(x^4 + 4))`dx
Find `int((3 sin x - 2) cos x)/(13 - cos^2 x- 7 sin x) dx`
Differentiate : \[\tan^{- 1} \left( \frac{1 + \cos x}{\sin x} \right)\] with respect to x .
Find `int_ sin ("x" - a)/(sin ("x" + a )) d"x"`
Find: `int_ (cos"x")/((1 + sin "x") (2+ sin"x")) "dx"`
Integrate the function `cos("x + a")/sin("x + b")` w.r.t. x.
Find: `intsqrt(1 - sin 2x) dx, pi/4 < x < pi/2`
Find: `int sin^-1 (2x) dx.`
Evaluate `int tan^8 x sec^4 x"d"x`
Find `int x^2tan^-1x"d"x`
Evaluate the following:
`int ((1 + cosx))/(x + sinx) "d"x`
Evaluate the following:
`int ("d"x)/(1 + cos x)`
Evaluate the following:
`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`
Evaluate the following:
`int sqrt(1 + sinx)"d"x`
The value of the integral `int_(1/3)^1 (x - x^3)^(1/3)/x^4 dx` is
`int (cos^2x)/(sin x + cos x)^2 dx` is equal to