Advertisements
Advertisements
प्रश्न
Find the integrals of the function:
sin3 (2x + 1)
उत्तर
Let `I = int sin^3 (2x + 1)` dx
`= 1/4 [3 sin (2x + 1) - sin 3 (2x + 1)]` dx
.....`[because sin^3 theta = 1/4 (3 sin theta - sin 3 theta)]`
`= 3/4 (- (cos (2x + 1))/2 - 1/4 ((- cos 3 (2x + 1))/6) + C`
`= -3/8 cos (2x + 1) + 1/24 cos 3 (2x + 1) + C`
`= - 3/8 cos (2x + 1) + 1/24 [4 cos^3 (2x + 1) - 3 cos (2x + 1) + C` ......`[because cos 3 theta = 4 cos^3 theta - 3 cos theta]`
`= - 3/8 cos (2x + 1) + 1/6 cos^3 (2x + 1) - 1/8 cos(2x + 1) + C`
`= - 1/2 cos (2x + 1) + 1/6 cos^3 (2x + 1) + C`
APPEARS IN
संबंधित प्रश्न
Evaluate :`int_(pi/6)^(pi/3) dx/(1+sqrtcotx)`
Find the integrals of the function:
cos 2x cos 4x cos 6x
Find the integrals of the function:
sin 4x sin 8x
Find the integrals of the function:
`(1-cosx)/(1 + cos x)`
Find the integrals of the function:
cos4 2x
Find the integrals of the function:
`(sin^2 x)/(1 + cos x)`
Find the integrals of the function:
tan3 2x sec 2x
Find the integrals of the function:
`1/(sin xcos^3 x)`
Find the integrals of the function:
`(cos 2x)/(cos x + sin x)^2`
Find the integrals of the function:
sin−1 (cos x)
Find `int dx/(x^2 + 4x + 8)`
Evaluate `int_0^pi (x sin x)/(1 + cos^2 x) dx`
Evaluate `int_0^(3/2) |x sin pix|dx`
Find `int((3 sin x - 2) cos x)/(13 - cos^2 x- 7 sin x) dx`
Find `int_ (sin "x" - cos "x" )/sqrt(1 + sin 2"x") d"x", 0 < "x" < π / 2 `
Find `int_ sin ("x" - a)/(sin ("x" + a )) d"x"`
Find `int_ (log "x")^2 d"x"`
Find the area of the triangle whose vertices are (-1, 1), (0, 5) and (3, 2), using integration.
Find: `int_ (cos"x")/((1 + sin "x") (2+ sin"x")) "dx"`
Integrate the function `cos("x + a")/sin("x + b")` w.r.t. x.
Find: `int sin^-1 (2x) dx.`
Find `int x^2tan^-1x"d"x`
Evaluate the following:
`int tan^2x sec^4 x"d"x`
Evaluate the following:
`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`
Evaluate the following:
`int (cosx - cos2x)/(1 - cosx) "d"x`
Evaluate the following:
`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`
Evaluate the following:
`int sin^-1 sqrt(x/("a" + x)) "d"x` (Hint: Put x = a tan2θ)
`int (x + sinx)/(1 + cosx) "d"x` is equal to ______.
`int sinx/(3 + 4cos^2x) "d"x` = ______.
The value of the integral `int_(1/3)^1 (x - x^3)^(1/3)/x^4 dx` is