Advertisements
Advertisements
प्रश्न
Find `int x^2tan^-1x"d"x`
उत्तर
I = `int x^2tan^-1x"d"x`
= `tan^-1x int x^2 "d"x - int 1/(1 + x^2) * x^3/3 "d"x`
= `x^3/3 tan^-1x - 1/3 int (x - x/(1 + x^2))"d"x`
= `x^3/3 tan^-1x - x^2/6 + 1/6 log|1 + x^2| + "C"`
APPEARS IN
संबंधित प्रश्न
Find the integrals of the function:
cos 2x cos 4x cos 6x
Find the integrals of the function:
`cos x/(1 + cos x)`
Find the integrals of the function:
`(sin^2 x)/(1 + cos x)`
Find the integrals of the function:
`(cos 2x - cos 2 alpha)/(cos x - cos alpha)`
Find the integrals of the function:
tan4x
Find the integrals of the function:
`1/(sin xcos^3 x)`
Find the integrals of the function:
sin−1 (cos x)
`int (sin^2x - cos^2 x)/(sin^2 x cos^2 x) dx` is equal to ______.
`int (e^x(1 +x))/cos^2(e^x x) dx` equals ______.
Differentiate : \[\tan^{- 1} \left( \frac{1 + \cos x}{\sin x} \right)\] with respect to x .
Find `int_ sin ("x" - a)/(sin ("x" + a )) d"x"`
Find `int_ (log "x")^2 d"x"`
Find `int_ (sin2"x")/((sin^2 "x"+1)(sin^2"x"+3))d"x"`
Find: `int_ (cos"x")/((1 + sin "x") (2+ sin"x")) "dx"`
Find: `intsqrt(1 - sin 2x) dx, pi/4 < x < pi/2`
Find: `int sin^-1 (2x) dx.`
Evaluate `int tan^8 x sec^4 x"d"x`
Find `int "dx"/(2sin^2x + 5cos^2x)`
Evaluate the following:
`int ((1 + cosx))/(x + sinx) "d"x`
Evaluate the following:
`int ("d"x)/(1 + cos x)`
Evaluate the following:
`int tan^2x sec^4 x"d"x`
Evaluate the following:
`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`
`int (cos^2x)/(sin x + cos x)^2 dx` is equal to