Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int tan^2x sec^4 x"d"x`
उत्तर
Let I = `int tan^2x sec^4 x"d"x`
= `int tan^2x sec^2x sec^2 x"d"x`
= `int tan^2x (1 + tan^2x)sec^2 x"d"x`
Put tan x = t
⇒ `sec^2x "d"x` = dt
∴ I = `int "t"^2(1 + "t"^2)"dt"`
= `int("t"^2 + "t"^4)"dt"`
= `"t"^3/3 + "t"^5/5 + "C"`
= `(tan^5x)/5 + (tan^3x)/3 + "C"`
APPEARS IN
संबंधित प्रश्न
Find the integrals of the function:
sin 3x cos 4x
Find the integrals of the function:
sin3 x cos3 x
Find the integrals of the function:
sin x sin 2x sin 3x
Find the integrals of the function:
`cos x/(1 + cos x)`
Find the integrals of the function:
sin4 x
Find the integrals of the function:
`(sin^2 x)/(1 + cos x)`
Find the integrals of the function:
`(cos 2x+ 2sin^2x)/(cos^2 x)`
Find the integrals of the function:
`1/(sin xcos^3 x)`
Find the integrals of the function:
sin−1 (cos x)
`int (sin^2x - cos^2 x)/(sin^2 x cos^2 x) dx` is equal to ______.
Find `int dx/(x^2 + 4x + 8)`
Evaluate `int_0^pi (x sin x)/(1 + cos^2 x) dx`
Find `int (2x)/((x^2 + 1)(x^4 + 4))`dx
Find `int_ (sin "x" - cos "x" )/sqrt(1 + sin 2"x") d"x", 0 < "x" < π / 2 `
Find `int_ (log "x")^2 d"x"`
Find:
`int"dx"/sqrt(5-4"x" - 2"x"^2)`
Integrate the function `cos("x + a")/sin("x + b")` w.r.t. x.
Find: `intsqrt(1 - sin 2x) dx, pi/4 < x < pi/2`
Find: `int sin^-1 (2x) dx.`
Find `int "dx"/(2sin^2x + 5cos^2x)`
Evaluate the following:
`int ((1 + cosx))/(x + sinx) "d"x`
Evaluate the following:
`int ("d"x)/(1 + cos x)`
Evaluate the following:
`int (sin^6x + cos^6x)/(sin^2x cos^2x) "d"x`
Evaluate the following:
`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`
`int (x + sinx)/(1 + cosx) "d"x` is equal to ______.
The value of the integral `int_(1/3)^1 (x - x^3)^(1/3)/x^4 dx` is
`int (cos^2x)/(sin x + cos x)^2 dx` is equal to