Advertisements
Advertisements
प्रश्न
Find the integrals of the function:
`(cos 2x)/(cos x + sin x)^2`
उत्तर
Let `I = int (cos 2x)/((cos x + sin x)^2)`
`= int (cos^2 x - sin^2 x)/((cos x + sin x)^2) dx`
`= int ((cos x - sin x) (cos x + sin x))/(cos x + sin x)^2 dx`
`= int (cos x - sin x)/(cos x + sin x) dx`
Put `cos x + sin x = t`
`(- sin x + cos x) dx = dt`
`therefore I = int dt/t = log abs t + C`
`= log abs (cos x + sin x) + C`
APPEARS IN
संबंधित प्रश्न
Find the integrals of the function:
sin2 (2x + 5)
Find the integrals of the function:
cos 2x cos 4x cos 6x
Find the integrals of the function:
sin3 x cos3 x
Find the integrals of the function:
`(1-cosx)/(1 + cos x)`
Find the integrals of the function:
sin4 x
Find the integrals of the function:
tan3 2x sec 2x
Find the integrals of the function:
`1/(cos(x - a) cos(x - b))`
Find `int dx/(x^2 + 4x + 8)`
Evaluate `int_0^pi (x sin x)/(1 + cos^2 x) dx`
Find `int (2x)/((x^2 + 1)(x^4 + 4))`dx
Differentiate : \[\tan^{- 1} \left( \frac{1 + \cos x}{\sin x} \right)\] with respect to x .
Evaluate : \[\int\limits_0^\pi \frac{x \tan x}{\sec x \cdot cosec x}dx\] .
Find `int_ (sin "x" - cos "x" )/sqrt(1 + sin 2"x") d"x", 0 < "x" < π / 2 `
Find `int_ sin ("x" - a)/(sin ("x" + a )) d"x"`
Find `int_ (log "x")^2 d"x"`
Find the area of the triangle whose vertices are (-1, 1), (0, 5) and (3, 2), using integration.
Find:
`int"dx"/sqrt(5-4"x" - 2"x"^2)`
Find: `intsqrt(1 - sin 2x) dx, pi/4 < x < pi/2`
Find: `int sin^-1 (2x) dx.`
Find `int x^2tan^-1x"d"x`
`int "e"^x (cosx - sinx)"d"x` is equal to ______.
`int "dx"/(sin^2x cos^2x)` is equal to ______.
Evaluate the following:
`int ((1 + cosx))/(x + sinx) "d"x`
Evaluate the following:
`int tan^2x sec^4 x"d"x`
Evaluate the following:
`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`
Evaluate the following:
`int (sin^6x + cos^6x)/(sin^2x cos^2x) "d"x`
Evaluate the following:
`int (cosx - cos2x)/(1 - cosx) "d"x`
Evaluate the following:
`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`
The value of the integral `int_(1/3)^1 (x - x^3)^(1/3)/x^4 dx` is
`int (cos^2x)/(sin x + cos x)^2 dx` is equal to