Advertisements
Advertisements
प्रश्न
Evaluate : \[\int\limits_0^\pi \frac{x \tan x}{\sec x \cdot cosec x}dx\] .
उत्तर
Given: \[\int\limits_0^\pi \frac{x \tan x}{\sec x \cdot cosec x}dx\] I = \[\int\limits_0^\pi \frac{x \tan x}{\sec x \cdot cosec x}dx\] =`int_0^x x sin^2` xdx ...(1)
∵ \[\int_0^a f(x)dx = \int_0^a f(a - x)dx\]
From equation (1), we have:
I =
`int_0^x (π - x)sin ^2(π - x) dx`
I =
`int_0^πsin^2 (π - x)dx - int_0^x x sin (π - x) dx`
\[\Rightarrow\] c
[From equation (1)]
\[\Rightarrow\] 2I
`=int_0^x π sin^2 ` xdx
\[\Rightarrow\] ⇒I = \[\frac{\pi}{2} \int\limits_0^\pi \sin^2 xdx\] = \[\frac{\pi}{4} \int_0^\pi \left( 1 - \cos2x \right)dx = \frac{\pi}{4} \int_0^\pi dx - \frac{\pi}{4} \int_0^\pi \cos2xdx\]
\[\Rightarrow\] I
\[= \frac{\pi^2}{4} - \frac{\pi}{8} \left( \sin2x \right)_0^\pi = \frac{\pi^2}{4} - \frac{\pi}{8}\]`(sin 2π -0) = π^2/4.`
APPEARS IN
संबंधित प्रश्न
Evaluate :`int_(pi/6)^(pi/3) dx/(1+sqrtcotx)`
Find the integrals of the function:
sin2 (2x + 5)
Find the integrals of the function:
sin x sin 2x sin 3x
Find the integrals of the function:
`(1-cosx)/(1 + cos x)`
Find the integrals of the function:
`cos x/(1 + cos x)`
Find the integrals of the function:
sin4 x
Find the integrals of the function:
`(sin^2 x)/(1 + cos x)`
Find the integrals of the function:
tan3 2x sec 2x
Find the integrals of the function:
`(sin^3 x + cos^3 x)/(sin^2x cos^2 x)`
Find the integrals of the function:
`(cos 2x+ 2sin^2x)/(cos^2 x)`
Find the integrals of the function:
`(cos 2x)/(cos x + sin x)^2`
Find `int (sin^2 x - cos^2x)/(sin x cos x) dx`
Find `int dx/(x^2 + 4x + 8)`
Evaluate `int_0^(3/2) |x sin pix|dx`
Find `int (2x)/((x^2 + 1)(x^4 + 4))`dx
Differentiate : \[\tan^{- 1} \left( \frac{1 + \cos x}{\sin x} \right)\] with respect to x .
Find: `int_ (cos"x")/((1 + sin "x") (2+ sin"x")) "dx"`
Find: `int sin^-1 (2x) dx.`
Evaluate `int tan^8 x sec^4 x"d"x`
Find `int "dx"/(2sin^2x + 5cos^2x)`
Find `int x^2tan^-1x"d"x`
`int "e"^x (cosx - sinx)"d"x` is equal to ______.
Evaluate the following:
`int tan^2x sec^4 x"d"x`
The value of the integral `int_(1/3)^1 (x - x^3)^(1/3)/x^4 dx` is
`int (cos^2x)/(sin x + cos x)^2 dx` is equal to