Advertisements
Advertisements
प्रश्न
Evaluate :`int_(pi/6)^(pi/3) dx/(1+sqrtcotx)`
उत्तर
Let `I = ∫_(π/3)^(π/6)1/(1 +sqrt(cotx)dx`
`=int_(pi/6)^(pi/3)1/(1+(sqrt(cosx)/sqrtsinx))dx`
`=int_(pi/6)^(pi/3)1/(sqrtsinx+(sqrt(sinx)+sqrtcosx))dx...(1)`
`now,I=int_(pi/6)^(pi/3)(sqrt(sin(pi/2-x)))/(sqrt(sin(pi/2-x))+sqrt(cos(pi/2-x)))dx .................(int_a^bf(X)dx=int_a^bf(b+a-x)dx)`
`=int_(pi/6)^(pi/3)(sqrt(cosx))/(sqrt(sinx)+sqrt(cosx))dx`
Adding (1) and (2), we get
`2I=int_(pi/6)^(pi/3)(sqrt(sinx)+sqrt(cosx))/(sqrt(sinx)+sqrt(cosx))dx`
`2I=int_(pi/6)^(pi/3)dx`
`2I=[x]_(pi/6)^(pi/3)`
`2I=pi/3-pi/6`
`2I=pi/6`
`I=pi/12`
APPEARS IN
संबंधित प्रश्न
Find the integrals of the function:
sin3 x cos3 x
Find the integrals of the function:
sin4 x
Find the integrals of the function:
cos4 2x
Find the integrals of the function:
`(cos 2x - cos 2 alpha)/(cos x - cos alpha)`
Find the integrals of the function:
tan3 2x sec 2x
Find the integrals of the function:
`(sin^3 x + cos^3 x)/(sin^2x cos^2 x)`
Find the integrals of the function:
`(cos 2x+ 2sin^2x)/(cos^2 x)`
Find the integrals of the function:
`(cos 2x)/(cos x + sin x)^2`
Find `int (sin^2 x - cos^2x)/(sin x cos x) dx`
Find `int dx/(x^2 + 4x + 8)`
Evaluate `int_0^pi (x sin x)/(1 + cos^2 x) dx`
Evaluate `int_0^(3/2) |x sin pix|dx`
Find `int (2x)/((x^2 + 1)(x^4 + 4))`dx
Find `int((3 sin x - 2) cos x)/(13 - cos^2 x- 7 sin x) dx`
Find `int_ (sin "x" - cos "x" )/sqrt(1 + sin 2"x") d"x", 0 < "x" < π / 2 `
Find:
`int"dx"/sqrt(5-4"x" - 2"x"^2)`
Integrate the function `cos("x + a")/sin("x + b")` w.r.t. x.
Find: `intsqrt(1 - sin 2x) dx, pi/4 < x < pi/2`
Find: `int sin^-1 (2x) dx.`
Find `int "dx"/(2sin^2x + 5cos^2x)`
`int "e"^x (cosx - sinx)"d"x` is equal to ______.
`int "dx"/(sin^2x cos^2x)` is equal to ______.
Evaluate the following:
`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`
Evaluate the following:
`int (sin^6x + cos^6x)/(sin^2x cos^2x) "d"x`
Evaluate the following:
`int (cosx - cos2x)/(1 - cosx) "d"x`
Evaluate the following:
`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`