Advertisements
Advertisements
Question
Evaluate :`int_(pi/6)^(pi/3) dx/(1+sqrtcotx)`
Solution
Let `I = ∫_(π/3)^(π/6)1/(1 +sqrt(cotx)dx`
`=int_(pi/6)^(pi/3)1/(1+(sqrt(cosx)/sqrtsinx))dx`
`=int_(pi/6)^(pi/3)1/(sqrtsinx+(sqrt(sinx)+sqrtcosx))dx...(1)`
`now,I=int_(pi/6)^(pi/3)(sqrt(sin(pi/2-x)))/(sqrt(sin(pi/2-x))+sqrt(cos(pi/2-x)))dx .................(int_a^bf(X)dx=int_a^bf(b+a-x)dx)`
`=int_(pi/6)^(pi/3)(sqrt(cosx))/(sqrt(sinx)+sqrt(cosx))dx`
Adding (1) and (2), we get
`2I=int_(pi/6)^(pi/3)(sqrt(sinx)+sqrt(cosx))/(sqrt(sinx)+sqrt(cosx))dx`
`2I=int_(pi/6)^(pi/3)dx`
`2I=[x]_(pi/6)^(pi/3)`
`2I=pi/3-pi/6`
`2I=pi/6`
`I=pi/12`
APPEARS IN
RELATED QUESTIONS
Evaluate : `intsin(x-a)/sin(x+a)dx`
Find the integrals of the function:
sin2 (2x + 5)
Find the integrals of the function:
sin3 x cos3 x
Find the integrals of the function:
sin 4x sin 8x
Find the integrals of the function:
`cos x/(1 + cos x)`
Find the integrals of the function:
cos4 2x
Find the integrals of the function:
`(cos x - sinx)/(1+sin 2x)`
Find the integrals of the function:
tan4x
Find the integrals of the function:
`(sin^3 x + cos^3 x)/(sin^2x cos^2 x)`
Find the integrals of the function:
sin−1 (cos x)
Find `int dx/(x^2 + 4x + 8)`
Evaluate `int_0^pi (x sin x)/(1 + cos^2 x) dx`
Find `int((3 sin x - 2) cos x)/(13 - cos^2 x- 7 sin x) dx`
Differentiate : \[\tan^{- 1} \left( \frac{1 + \cos x}{\sin x} \right)\] with respect to x .
Find `int_ (sin "x" - cos "x" )/sqrt(1 + sin 2"x") d"x", 0 < "x" < π / 2 `
Find `int_ (sin2"x")/((sin^2 "x"+1)(sin^2"x"+3))d"x"`
Integrate the function `cos("x + a")/sin("x + b")` w.r.t. x.
Evaluate `int tan^8 x sec^4 x"d"x`
Find `int x^2tan^-1x"d"x`
Evaluate the following:
`int (cosx - cos2x)/(1 - cosx) "d"x`
Evaluate the following:
`int sin^-1 sqrt(x/("a" + x)) "d"x` (Hint: Put x = a tan2θ)
`int (x + sinx)/(1 + cosx) "d"x` is equal to ______.
`int sinx/(3 + 4cos^2x) "d"x` = ______.
The value of the integral `int_(1/3)^1 (x - x^3)^(1/3)/x^4 dx` is