Advertisements
Advertisements
Question
Evaluate the following:
`int (cosx - cos2x)/(1 - cosx) "d"x`
Solution
Let I = `int (cosx - cos2x)/(1 - cosx) "d"x`
= `int (2sin (x + 2x)/2 * sin ((2x - x)/2))/(2sin^2 x/2) "d"x` ......`[because cos "C" - cos "D" = 2 sin ("C" + "D")/2 * sin ("D" - "C")/2]`
= `int (2sin (3x)/2 * sin x/2)/(2sin^2 x/2) "d"x`
= `int (sin (3x)/2)/(sin x/2) "d"x`
= `int (sin 3(x/2))/(sin x/2) "d"x`
= `int (3 sin x/2 - 4 sin^3 x/2)/(sin x/2) "d"x` ....[sin 3x = 3 sin x – 4 sin3x]
= `int (sin x/2 (3 - 4 sin^2 x/2))/(sin x/2) "d"x`
= `int (3 - 4 sin^2 x/2) "d"x`
= `int [3 - 2(1 - cosx)]"d"x` ......`[because 2 sin^2 x/2 = 1 - cos x]`
= `int (3 - 2 + 2 cos x) "d"x`
= `int (1 + 2 cos x) "d"x`
= x + 2 sin x + C
Hence, I = x + 2 sin x + C.
APPEARS IN
RELATED QUESTIONS
Find the integrals of the function:
sin2 (2x + 5)
Find the integrals of the function:
sin 3x cos 4x
Find the integrals of the function:
sin3 (2x + 1)
Find the integrals of the function:
`(1-cosx)/(1 + cos x)`
Find the integrals of the function:
`cos x/(1 + cos x)`
Find the integrals of the function:
cos4 2x
Find the integrals of the function:
`(cos 2x+ 2sin^2x)/(cos^2 x)`
`int (sin^2x - cos^2 x)/(sin^2 x cos^2 x) dx` is equal to ______.
Evaluate `int_0^(3/2) |x sin pix|dx`
Find `int (2x)/((x^2 + 1)(x^4 + 4))`dx
Find `int((3 sin x - 2) cos x)/(13 - cos^2 x- 7 sin x) dx`
Differentiate : \[\tan^{- 1} \left( \frac{1 + \cos x}{\sin x} \right)\] with respect to x .
Find `int_ (sin "x" - cos "x" )/sqrt(1 + sin 2"x") d"x", 0 < "x" < π / 2 `
Find `int_ sin ("x" - a)/(sin ("x" + a )) d"x"`
Find `int_ (log "x")^2 d"x"`
Find `int_ (sin2"x")/((sin^2 "x"+1)(sin^2"x"+3))d"x"`
Find the area of the triangle whose vertices are (-1, 1), (0, 5) and (3, 2), using integration.
Find:
`int"dx"/sqrt(5-4"x" - 2"x"^2)`
Find: `int sin^-1 (2x) dx.`
Find `int x^2tan^-1x"d"x`
`int "e"^x (cosx - sinx)"d"x` is equal to ______.
Evaluate the following:
`int ("d"x)/(1 + cos x)`
Evaluate the following:
`int sqrt(1 + sinx)"d"x`
Evaluate the following:
`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`
Evaluate the following:
`int sin^-1 sqrt(x/("a" + x)) "d"x` (Hint: Put x = a tan2θ)
`int sinx/(3 + 4cos^2x) "d"x` = ______.