Advertisements
Advertisements
Question
Find the integrals of the function:
sin3 (2x + 1)
Solution
Let `I = int sin^3 (2x + 1)` dx
`= 1/4 [3 sin (2x + 1) - sin 3 (2x + 1)]` dx
.....`[because sin^3 theta = 1/4 (3 sin theta - sin 3 theta)]`
`= 3/4 (- (cos (2x + 1))/2 - 1/4 ((- cos 3 (2x + 1))/6) + C`
`= -3/8 cos (2x + 1) + 1/24 cos 3 (2x + 1) + C`
`= - 3/8 cos (2x + 1) + 1/24 [4 cos^3 (2x + 1) - 3 cos (2x + 1) + C` ......`[because cos 3 theta = 4 cos^3 theta - 3 cos theta]`
`= - 3/8 cos (2x + 1) + 1/6 cos^3 (2x + 1) - 1/8 cos(2x + 1) + C`
`= - 1/2 cos (2x + 1) + 1/6 cos^3 (2x + 1) + C`
APPEARS IN
RELATED QUESTIONS
Evaluate :`int_(pi/6)^(pi/3) dx/(1+sqrtcotx)`
Evaluate : `intsin(x-a)/sin(x+a)dx`
Find the integrals of the function:
cos 2x cos 4x cos 6x
Find the integrals of the function:
sin3 x cos3 x
Find the integrals of the function:
sin x sin 2x sin 3x
Find the integrals of the function:
sin 4x sin 8x
Find the integrals of the function:
`cos x/(1 + cos x)`
Find the integrals of the function:
sin4 x
Find the integrals of the function:
`(sin^2 x)/(1 + cos x)`
Find the integrals of the function:
`(cos x - sinx)/(1+sin 2x)`
Find the integrals of the function:
tan3 2x sec 2x
Find the integrals of the function:
`(sin^3 x + cos^3 x)/(sin^2x cos^2 x)`
Find the integrals of the function:
`(cos 2x+ 2sin^2x)/(cos^2 x)`
Find the integrals of the function:
`1/(cos(x - a) cos(x - b))`
Find `int (sin^2 x - cos^2x)/(sin x cos x) dx`
Find `int dx/(x^2 + 4x + 8)`
Evaluate : \[\int\limits_0^\pi \frac{x \tan x}{\sec x \cdot cosec x}dx\] .
Find `int_ sin ("x" - a)/(sin ("x" + a )) d"x"`
Find `int_ (log "x")^2 d"x"`
Find `int_ (sin2"x")/((sin^2 "x"+1)(sin^2"x"+3))d"x"`
Find: `int_ (cos"x")/((1 + sin "x") (2+ sin"x")) "dx"`
Find: `intsqrt(1 - sin 2x) dx, pi/4 < x < pi/2`
`int "e"^x (cosx - sinx)"d"x` is equal to ______.
`int "dx"/(sin^2x cos^2x)` is equal to ______.
`int (sin^6x)/(cos^8x) "d"x` = ______.
Evaluate the following:
`int ("d"x)/(1 + cos x)`
Evaluate the following:
`int tan^2x sec^4 x"d"x`
Evaluate the following:
`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`
Evaluate the following:
`int (sin^6x + cos^6x)/(sin^2x cos^2x) "d"x`
Evaluate the following:
`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`
Evaluate the following:
`int sin^-1 sqrt(x/("a" + x)) "d"x` (Hint: Put x = a tan2θ)
The value of the integral `int_(1/3)^1 (x - x^3)^(1/3)/x^4 dx` is