Advertisements
Advertisements
Question
Evaluate the following:
`int sin^-1 sqrt(x/("a" + x)) "d"x` (Hint: Put x = a tan2θ)
Solution
Let I = `int sin^-1 sqrt(x/("a" + x)) "d"x`
Put x = a tan2θ
dx = 2a tan θ . sec2θ . dθ
∴ I = `int sin^-1 sqrt(("a" tan^2theta)/("a" + "a" tan^2 theta)) * 2"a" tan theta * sec^2theta "d"theta`
= `int sin^-1 (sqrt("a") tan theta)/(sqrt("a") tan theta) * 2"a" tan theta * sec theta "d"theta`
= `int sin^-1 ((sintheta/costheta)/(1/costheta)) * 2"a" tan theta * sec^2theta "d"theta`
= `int sin^-1 (sin theta) * 2"a" tan theta * sec^2theta "d"theta`
= `2"a" int theta tan theta * sec^2theta "d"theta`
= `2"a"[theta int tan theta * sec^2 theta "d"theta - int ["D"(theta) * int tan theta * sec^2 theta "d"theta]]`
= `2"a" [theta * (tan^2theta)/2 - int (1*tan^2theta)/2 "d"theta]`
= `2"a"[theta * (tan^2theta)/2 - 1/2 int (sec^2theta - 1)"d"theta]`
= `2"a"[theta* (tan^2theta)/2 - 1/2 (tantheta - theta)]`
= `2"a"[theta * (tan^2theta)/2 - 1/2 tan theta + 1/2 theta]`
= `2"a"[tan^-1 sqrt(x/"a") * x/(2"a") - 1/2 sqrt(x/"a") + 1/2 tan^-1 sqrt(x/"a")] + "C"`
= `"a"[x/"a" tan^-1 sqrt(x/"a") - sqrt(x/"a") + tan^-1 sqrt(x/"a")] + "C"`
Hence, I = `"a"[x/"a" tan^-1 sqrt(x/"a") - sqrt(x/"a") + tan^-1 sqrt(x/"a")] + "C"`
APPEARS IN
RELATED QUESTIONS
Evaluate : `intsin(x-a)/sin(x+a)dx`
Find the integrals of the function:
sin 3x cos 4x
Find the integrals of the function:
sin x sin 2x sin 3x
Find the integrals of the function:
sin 4x sin 8x
Find the integrals of the function:
`cos x/(1 + cos x)`
Find the integrals of the function:
sin4 x
Find the integrals of the function:
tan3 2x sec 2x
Find the integrals of the function:
`(cos 2x+ 2sin^2x)/(cos^2 x)`
Find the integrals of the function:
sin−1 (cos x)
Find `int (2x)/((x^2 + 1)(x^4 + 4))`dx
Evaluate : \[\int\limits_0^\pi \frac{x \tan x}{\sec x \cdot cosec x}dx\] .
Find `int_ (sin2"x")/((sin^2 "x"+1)(sin^2"x"+3))d"x"`
Find:
`int"dx"/sqrt(5-4"x" - 2"x"^2)`
Find: `int sec^2 x /sqrt(tan^2 x+4) dx.`
Find: `intsqrt(1 - sin 2x) dx, pi/4 < x < pi/2`
Evaluate `int tan^8 x sec^4 x"d"x`
Find `int "dx"/(2sin^2x + 5cos^2x)`
`int "e"^x (cosx - sinx)"d"x` is equal to ______.
`int "dx"/(sin^2x cos^2x)` is equal to ______.
Evaluate the following:
`int tan^2x sec^4 x"d"x`
Evaluate the following:
`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`
Evaluate the following:
`int (sin^6x + cos^6x)/(sin^2x cos^2x) "d"x`
Evaluate the following:
`int (cosx - cos2x)/(1 - cosx) "d"x`
Evaluate the following:
`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`