Advertisements
Advertisements
Question
Find the integrals of the function:
`(sin^2 x)/(1 + cos x)`
Solution
Let `I = int (sin^2 x)/(1 + cos x) dx`
`= int (1 - cos^2 x)/(1+ cos x) dx`
`= int ((1 - cos x) (1 + cos x))/(1 + cos x) dx`
`= int (1 - cos x) dx`
`= int 1 dx - int cos x dx`
`= x - sin x + C`
APPEARS IN
RELATED QUESTIONS
Find the integrals of the function:
sin2 (2x + 5)
Find the integrals of the function:
sin3 (2x + 1)
Find the integrals of the function:
sin3 x cos3 x
Find the integrals of the function:
sin x sin 2x sin 3x
Find the integrals of the function:
`(1-cosx)/(1 + cos x)`
Find the integrals of the function:
`cos x/(1 + cos x)`
Find the integrals of the function:
sin4 x
Find the integrals of the function:
cos4 2x
Find the integrals of the function:
`(cos 2x - cos 2 alpha)/(cos x - cos alpha)`
Find the integrals of the function:
`(cos x - sinx)/(1+sin 2x)`
Find the integrals of the function:
tan3 2x sec 2x
Find the integrals of the function:
`(sin^3 x + cos^3 x)/(sin^2x cos^2 x)`
Find the integrals of the function:
`1/(cos(x - a) cos(x - b))`
`int (sin^2x - cos^2 x)/(sin^2 x cos^2 x) dx` is equal to ______.
Find `int dx/(x^2 + 4x + 8)`
Find `int (2x)/((x^2 + 1)(x^4 + 4))`dx
Find `int_ (log "x")^2 d"x"`
Find `int_ (sin2"x")/((sin^2 "x"+1)(sin^2"x"+3))d"x"`
Find the area of the triangle whose vertices are (-1, 1), (0, 5) and (3, 2), using integration.
Find:
`int"dx"/sqrt(5-4"x" - 2"x"^2)`
Integrate the function `cos("x + a")/sin("x + b")` w.r.t. x.
Find: `intsqrt(1 - sin 2x) dx, pi/4 < x < pi/2`
Find `int "dx"/(2sin^2x + 5cos^2x)`
`int "dx"/(sin^2x cos^2x)` is equal to ______.
`int (sin^6x)/(cos^8x) "d"x` = ______.
Evaluate the following:
`int ("d"x)/(1 + cos x)`
Evaluate the following:
`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`
Evaluate the following:
`int (sin^6x + cos^6x)/(sin^2x cos^2x) "d"x`
Evaluate the following:
`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`
The value of the integral `int_(1/3)^1 (x - x^3)^(1/3)/x^4 dx` is
`int (cos^2x)/(sin x + cos x)^2 dx` is equal to