English

Evaluate the following: d∫dx1+cosx - Mathematics

Advertisements
Advertisements

Question

Evaluate the following:

`int ("d"x)/(1 + cos x)`

Sum

Solution

I = `int ("d"x)/(1 + cos x)`

= `int 1/(2 cos^2  x/2) "d"x`

= `1/2 int sec^2  x/2 "d"x`

= `1/2 * 1/(1/2) tan  x/2 + "C"`

= `tan  x/2 + "C"`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise [Page 164]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 7 Integrals
Exercise | Q 6 | Page 164

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate : `intsin(x-a)/sin(x+a)dx`

 


Find the integrals of the function:

sin2 (2x + 5)


Find the integrals of the function:

cos 2x cos 4x cos 6x


Find the integrals of the function:

sin x sin 2x sin 3x


Find the integrals of the function:

`cos x/(1 + cos x)`


Find the integrals of the function:

`(sin^2 x)/(1 + cos x)`


Find the integrals of the function:

`(cos x -  sinx)/(1+sin 2x)`


Find the integrals of the function:

`(sin^3 x + cos^3 x)/(sin^2x cos^2 x)`


Find the integrals of the function:

`(cos 2x+ 2sin^2x)/(cos^2 x)`


Find the integrals of the function:

sin−1 (cos x)


Find `int (sin^2 x - cos^2x)/(sin x cos x) dx`


Find `int((3 sin x - 2) cos x)/(13 - cos^2 x- 7 sin x) dx`


Evaluate : \[\int\limits_0^\pi \frac{x \tan x}{\sec x \cdot cosec x}dx\] .


Find `int_  (sin "x" - cos "x" )/sqrt(1 + sin 2"x") d"x", 0 < "x" < π / 2 `


Find `int_  sin ("x" - a)/(sin ("x" + a )) d"x"`


Find `int_  (sin2"x")/((sin^2 "x"+1)(sin^2"x"+3))d"x"`


Find the area of the triangle whose vertices are (-1, 1), (0, 5) and (3, 2), using integration. 


Find:
`int"dx"/sqrt(5-4"x" - 2"x"^2)`


Integrate the function `cos("x + a")/sin("x + b")` w.r.t. x.


Find: `int sec^2 x /sqrt(tan^2 x+4) dx.`


Evaluate `int tan^8 x sec^4 x"d"x`


`int "e"^x (cosx - sinx)"d"x` is equal to ______.


Evaluate the following:

`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`


Evaluate the following:

`int sqrt(1 + sinx)"d"x`


Evaluate the following:

`int (sin^6x + cos^6x)/(sin^2x cos^2x) "d"x`


Evaluate the following:

`int (cosx - cos2x)/(1 - cosx) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×