Advertisements
Advertisements
Question
`int sinx/(3 + 4cos^2x) "d"x` = ______.
Solution
`int sinx/(3 + 4cos^2x) "d"x` = `- 1/(2sqrt(3)) tan^-1 (2/sqrt(3) cos x) + "C"`.
Explanation:
Let I = `int sinx/(3 + 4cos^2x) "d"x`
Put cos x = t
∴ – sin x dx = dt
⇒ sinx dx = – dt
∴ I = `- int "dt"/(3 + 4"t"^2)`
= `- 1/4 int "dt"/(3/4 + "t"^2)`
= `- 1/4 int "dt"/((sqrt(3)/2)^2 + "t"^2)`
= `1/4 xx 1/(sqrt(3)/2) tan^-1 ("t"/(sqrt(3)/2)) + "C"`
= ` 1/(2sqrt(3)) tan^-1 ((2"t")/sqrt(3)) + "C"`
= `- 1/(2sqrt(3)) tan^-1 ((2cosx)/sqrt(3)) + "C"`
Hence I = `- 1/(2sqrt(3)) tan^-1 (2/sqrt(3) cos x) + "C"`.
APPEARS IN
RELATED QUESTIONS
Find the integrals of the function:
sin3 (2x + 1)
Find the integrals of the function:
sin3 x cos3 x
Find the integrals of the function:
sin 4x sin 8x
Find the integrals of the function:
cos4 2x
Find the integrals of the function:
`(sin^2 x)/(1 + cos x)`
Find the integrals of the function:
`(cos 2x - cos 2 alpha)/(cos x - cos alpha)`
Find the integrals of the function:
tan3 2x sec 2x
Find the integrals of the function:
`1/(sin xcos^3 x)`
Find the integrals of the function:
`(cos 2x)/(cos x + sin x)^2`
`int (sin^2x - cos^2 x)/(sin^2 x cos^2 x) dx` is equal to ______.
`int (e^x(1 +x))/cos^2(e^x x) dx` equals ______.
Find `int dx/(x^2 + 4x + 8)`
Evaluate `int_0^pi (x sin x)/(1 + cos^2 x) dx`
Differentiate : \[\tan^{- 1} \left( \frac{1 + \cos x}{\sin x} \right)\] with respect to x .
Find `int_ (sin "x" - cos "x" )/sqrt(1 + sin 2"x") d"x", 0 < "x" < π / 2 `
Integrate the function `cos("x + a")/sin("x + b")` w.r.t. x.
Find: `int sec^2 x /sqrt(tan^2 x+4) dx.`
`int "e"^x (cosx - sinx)"d"x` is equal to ______.
`int (sin^6x)/(cos^8x) "d"x` = ______.
Evaluate the following:
`int tan^2x sec^4 x"d"x`
Evaluate the following:
`int sqrt(1 + sinx)"d"x`
Evaluate the following:
`int (cosx - cos2x)/(1 - cosx) "d"x`
Evaluate the following:
`int sin^-1 sqrt(x/("a" + x)) "d"x` (Hint: Put x = a tan2θ)