हिंदी

Find the integrals of the function: sin2 (2x + 5) - Mathematics

Advertisements
Advertisements

प्रश्न

Find the integrals of the function:

sin2 (2x + 5)

योग

उत्तर

Let `I = int sin^2 (2x + 5)` dx

  ....`[because sin^2 A = (1 - cos 2A)/2]`

`= 1/2 int [(1 - cos (4x + 10)]` dx

`= 1/2 int dx - 1/2 int cos (4x + 10)` dx

`= 1/2 [x - (sin (4x + 10))/4] + C`

Put 4x + 10 = t 

4 dx = dt

`x/2 - 1/2 . 1/4 int cos t  dt`

`= x/2 - 1/8  sin t + C`

`= x/2 - 1/8  sin (4x + 10) + C`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise 7.3 [पृष्ठ ३०७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise 7.3 | Q 1 | पृष्ठ ३०७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the integrals of the function:

sin 3x cos 4x


Find the integrals of the function:

sin3 (2x + 1)


Find the integrals of the function:

sin x sin 2x sin 3x


Find the integrals of the function:

cos4 2x


Find the integrals of the function:

`(cos 2x - cos 2 alpha)/(cos x - cos alpha)`


Find the integrals of the function:

`(cos x -  sinx)/(1+sin 2x)`


Find the integrals of the function:

tan4x


Find the integrals of the function:

`(sin^3 x + cos^3 x)/(sin^2x cos^2 x)`


Find the integrals of the function:

`(cos 2x+ 2sin^2x)/(cos^2 x)`


Find the integrals of the function:

`1/(sin xcos^3 x)`


Find the integrals of the function:

`(cos 2x)/(cos x + sin x)^2`


Find the integrals of the function:

`1/(cos(x - a) cos(x - b))`


`int (sin^2x - cos^2 x)/(sin^2 x cos^2 x) dx` is equal to ______.


`int (e^x(1 +x))/cos^2(e^x x) dx` equals ______.


Find `int (sin^2 x - cos^2x)/(sin x cos x) dx`


Find  `int dx/(x^2 + 4x + 8)`


Evaluate `int_0^pi (x sin x)/(1 + cos^2 x) dx`


Find `int (2x)/((x^2 + 1)(x^4 + 4))`dx


Differentiate : \[\tan^{- 1} \left( \frac{1 + \cos x}{\sin x} \right)\] with respect to x .


Evaluate : \[\int\limits_0^\pi \frac{x \tan x}{\sec x \cdot cosec x}dx\] .


Find `int_  (sin "x" - cos "x" )/sqrt(1 + sin 2"x") d"x", 0 < "x" < π / 2 `


Find the area of the triangle whose vertices are (-1, 1), (0, 5) and (3, 2), using integration. 


Find:
`int"dx"/sqrt(5-4"x" - 2"x"^2)`


Find: `intsqrt(1 - sin 2x) dx, pi/4 < x < pi/2`


Find `int "dx"/(2sin^2x + 5cos^2x)`


Find `int x^2tan^-1x"d"x`


`int "dx"/(sin^2x cos^2x)` is equal to ______.


`int (sin^6x)/(cos^8x) "d"x` = ______.


Evaluate the following:

`int ("d"x)/(1 + cos x)`


Evaluate the following:

`int tan^2x sec^4 x"d"x`


Evaluate the following:

`int (sin^6x + cos^6x)/(sin^2x cos^2x) "d"x`


Evaluate the following:

`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`


`int (x + sinx)/(1 + cosx) "d"x` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×