Advertisements
Advertisements
प्रश्न
Find the integrals of the function:
`1/(cos(x - a) cos(x - b))`
उत्तर
Let `I = int 1/(cos (x - a) cos (x - b)) dx`
`= 1/(sin(a - b)) int sin [(x - b) - (x - a)]/(cos (x - a) cos (x - b)) dx`
`= 1/sin (a - b) int (sin (x - b) cos (x - a) - cos (x - b) sin (x - a))/(cos (x - a) cos (x - b))dx`
`= 1/(sin (a - b)) [int tan (x - b) dx - int tan (x - a) dx]`
`= 1/(sin (a - b)) [ - log abs (cos (x - b)) + log abs (cos (x - b))] = C`
`= 1/(sin (a - b)) log abs (cos (x - a)/cos (x - b)) + C`
APPEARS IN
संबंधित प्रश्न
Evaluate :`int_(pi/6)^(pi/3) dx/(1+sqrtcotx)`
Evaluate : `intsin(x-a)/sin(x+a)dx`
Find the integrals of the function:
sin 3x cos 4x
Find the integrals of the function:
sin x sin 2x sin 3x
Find the integrals of the function:
sin 4x sin 8x
Find the integrals of the function:
`cos x/(1 + cos x)`
Find the integrals of the function:
sin4 x
Find the integrals of the function:
`(sin^2 x)/(1 + cos x)`
Find the integrals of the function:
`(cos 2x - cos 2 alpha)/(cos x - cos alpha)`
Find the integrals of the function:
tan3 2x sec 2x
Find the integrals of the function:
tan4x
Find the integrals of the function:
`1/(sin xcos^3 x)`
Find the integrals of the function:
`(cos 2x)/(cos x + sin x)^2`
Find the integrals of the function:
sin−1 (cos x)
Evaluate `int_0^pi (x sin x)/(1 + cos^2 x) dx`
Differentiate : \[\tan^{- 1} \left( \frac{1 + \cos x}{\sin x} \right)\] with respect to x .
Find `int_ (sin "x" - cos "x" )/sqrt(1 + sin 2"x") d"x", 0 < "x" < π / 2 `
Find `int_ sin ("x" - a)/(sin ("x" + a )) d"x"`
Find `int_ (log "x")^2 d"x"`
Find `int_ (sin2"x")/((sin^2 "x"+1)(sin^2"x"+3))d"x"`
Find: `int_ (cos"x")/((1 + sin "x") (2+ sin"x")) "dx"`
Integrate the function `cos("x + a")/sin("x + b")` w.r.t. x.
Find: `intsqrt(1 - sin 2x) dx, pi/4 < x < pi/2`
Find `int "dx"/(2sin^2x + 5cos^2x)`
Find `int x^2tan^-1x"d"x`
`int "dx"/(sin^2x cos^2x)` is equal to ______.
Evaluate the following:
`int ((1 + cosx))/(x + sinx) "d"x`
Evaluate the following:
`int tan^2x sec^4 x"d"x`
Evaluate the following:
`int (sin^6x + cos^6x)/(sin^2x cos^2x) "d"x`
Evaluate the following:
`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`
Evaluate the following:
`int sin^-1 sqrt(x/("a" + x)) "d"x` (Hint: Put x = a tan2θ)
`int (x + sinx)/(1 + cosx) "d"x` is equal to ______.
`int sinx/(3 + 4cos^2x) "d"x` = ______.