Advertisements
Advertisements
प्रश्न
Find: `int sec^2 x /sqrt(tan^2 x+4) dx.`
उत्तर
`I = int sec^2 x /sqrt(tan^2 x+4) dx.`
`"Let" tan x = t`
`sec^2 xdx = dt`
So, `I = int dt/sqrt(t^2 + 4)`
or, `I = int dt/sqrt(t^2 + 2^2)`
Since, we Know
`int dx/sqrt(x^2 + a^2) = "In" |x + sqrt(a^2 + x^2)| + "C"`
`I = "In" |t + sqrt(t^2 + 4)| + "C"`
`i.e`
`I = "In"|tanx + sqrt(tan^2 x + 4)| + "C"`
APPEARS IN
संबंधित प्रश्न
Find the integrals of the function:
sin2 (2x + 5)
Find the integrals of the function:
cos 2x cos 4x cos 6x
Find the integrals of the function:
sin3 x cos3 x
Find the integrals of the function:
sin x sin 2x sin 3x
Find the integrals of the function:
`(1-cosx)/(1 + cos x)`
Find the integrals of the function:
`cos x/(1 + cos x)`
Find the integrals of the function:
`(cos 2x - cos 2 alpha)/(cos x - cos alpha)`
Find the integrals of the function:
`(cos x - sinx)/(1+sin 2x)`
Find the integrals of the function:
`(sin^3 x + cos^3 x)/(sin^2x cos^2 x)`
Find the integrals of the function:
`1/(sin xcos^3 x)`
`int (e^x(1 +x))/cos^2(e^x x) dx` equals ______.
Evaluate `int_0^pi (x sin x)/(1 + cos^2 x) dx`
Evaluate `int_0^(3/2) |x sin pix|dx`
Find `int (2x)/((x^2 + 1)(x^4 + 4))`dx
Find `int((3 sin x - 2) cos x)/(13 - cos^2 x- 7 sin x) dx`
Evaluate : \[\int\limits_0^\pi \frac{x \tan x}{\sec x \cdot cosec x}dx\] .
Find `int_ (sin "x" - cos "x" )/sqrt(1 + sin 2"x") d"x", 0 < "x" < π / 2 `
Find `int_ sin ("x" - a)/(sin ("x" + a )) d"x"`
Find `int_ (log "x")^2 d"x"`
Find:
`int"dx"/sqrt(5-4"x" - 2"x"^2)`
Find `int "dx"/(2sin^2x + 5cos^2x)`
`int "e"^x (cosx - sinx)"d"x` is equal to ______.
Evaluate the following:
`int sqrt(1 + sinx)"d"x`
`int sinx/(3 + 4cos^2x) "d"x` = ______.
`int (cos^2x)/(sin x + cos x)^2 dx` is equal to