Advertisements
Advertisements
प्रश्न
Solve the following differential equation :
`"dy"/"dx" + "y" = cos"x" - sin"x"`
उत्तर
Given:
`"dy"/"dx" + "y" = cos"x" - sin"x"` ............(1)
This differential equation is a linear differential equation of the form `"dy"/"dx"+"PQ"="Q"`
P = 1, Q = cos x - sin x
I.F. = e∫Pdx = e∫1dx = ex
Now multiply (1) with the I.F. we get
`"e"^"x"("dy"/"dx"+"y") = "e"^"x"(cos"x"-sin"x")`
Integrating both sides with respect to x.
yex=∫excosx-sinxdx+C⇒yex=∫excosxdx-∫exsinxdx+C⇒yex=excosx-∫-sinxexdx-∫exsinxdx+C⇒yex=excosx+∫exsinxdx-∫exsinxdx+C⇒yex=excosx+C">
yex = ∫ex (cos x -sin s)dx + C
⇒ yex = ∫ex cos xdx - ∫exsin xdx + C
⇒ yex = ex cosx - ∫(- sinx)exdx - ∫exsin xdx + C
⇒ yex = ex cosx + ∫exsin xdx - ∫exsin xdx + C
⇒ yex = ex cosx + C
Thus, yex = ex cosx + C is the required solution of the given differential equation.
APPEARS IN
संबंधित प्रश्न
Solve the following differential equation: `(x^2-1)dy/dx+2xy=2/(x^2-1)`
Find the integrating factor for the following differential equation:`x logx dy/dx+y=2log x`
\[\frac{dy}{dx}\] + y tan x = cos x
Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?
Solve the differential equation: (x + 1) dy – 2xy dx = 0
Solve the differential equation: (1 + x2) dy + 2xy dx = cot x dx
Solve the differential equation `"dy"/"dx" + y/x` = x2.
`"dy"/"dx" + y` = 5 is a differential equation of the type `"dy"/"dx" + "P"y` = Q but it can be solved using variable separable method also.
Integrating factor of the differential equation of the form `("d"x)/("d"y) + "P"_1x = "Q"_1` is given by `"e"^(int P_1dy)`.
Solution of the differential equation of the type `("d"x)/("d"y) + "p"_1x = "Q"_1` is given by x.I.F. = `("I"."F") xx "Q"_1"d"y`.
Correct substitution for the solution of the differential equation of the type `("d"x)/("d"y) = "g"(x, y)` where g(x, y) is a homogeneous function of the degree zero is x = vy.
If ex + ey = ex+y, then `"dy"/"dx"` is:
Solve the differential equation: xdy – ydx = `sqrt(x^2 + y^2)dx`
Find the general solution of the differential equation: (x3 + y3)dy = x2ydx
Let y = y(x) be the solution of the differential equation `xtan(y/x)dy = (ytan(y/x) - x)dx, -1 ≤ x ≤ 1, y(1/2) = π/6`. Then the area of the region bounded by the curves x = 0, x = `1/sqrt(2)` and y = y(x) in the upper half plane is ______.
Let y = y(x) be the solution of the differential equation `e^xsqrt(1 - y^2)dx + (y/x)dy` = 0, y(1) = –1. Then, the value of (y(3))2 is equal to ______.
If y = f(x), f'(0) = f(0) = 1 and if y = f(x) satisfies `(d^2y)/(dx^2) + (dy)/(dx)` = x, then the value of [f(1)] is ______ (where [.] denotes greatest integer function)
The solution of the differential equation `(1 + y^2) + (x - e^(tan^-1y)) (dy)/(dx)` = 0, is ______.
Solve the differential equation:
`dy/dx` = cosec y