Advertisements
Advertisements
प्रश्न
Find the integrals of the function:
sin−1 (cos x)
उत्तर
Let `I - int sin^-1 (cos x) dx`
`int sin^-1 [sin (pi/2 - x)] dx`
`= int (pi/2 - x) dx`
`= pi/2 int dx - int x dx`
`= (pix)/2 - x^2/2 +C`
APPEARS IN
संबंधित प्रश्न
Evaluate : `intsin(x-a)/sin(x+a)dx`
Find the integrals of the function:
sin3 (2x + 1)
Find the integrals of the function:
sin x sin 2x sin 3x
Find the integrals of the function:
sin 4x sin 8x
Find the integrals of the function:
`cos x/(1 + cos x)`
Find the integrals of the function:
sin4 x
Find the integrals of the function:
cos4 2x
Find the integrals of the function:
`(sin^2 x)/(1 + cos x)`
Find the integrals of the function:
`(cos 2x - cos 2 alpha)/(cos x - cos alpha)`
Find the integrals of the function:
`(cos x - sinx)/(1+sin 2x)`
Find the integrals of the function:
`(sin^3 x + cos^3 x)/(sin^2x cos^2 x)`
`int (sin^2x - cos^2 x)/(sin^2 x cos^2 x) dx` is equal to ______.
`int (e^x(1 +x))/cos^2(e^x x) dx` equals ______.
Find `int((3 sin x - 2) cos x)/(13 - cos^2 x- 7 sin x) dx`
Differentiate : \[\tan^{- 1} \left( \frac{1 + \cos x}{\sin x} \right)\] with respect to x .
Evaluate : \[\int\limits_0^\pi \frac{x \tan x}{\sec x \cdot cosec x}dx\] .
Find: `int_ (cos"x")/((1 + sin "x") (2+ sin"x")) "dx"`
Find:
`int"dx"/sqrt(5-4"x" - 2"x"^2)`
Find: `int sec^2 x /sqrt(tan^2 x+4) dx.`
Find: `intsqrt(1 - sin 2x) dx, pi/4 < x < pi/2`
Find: `int sin^-1 (2x) dx.`
Evaluate `int tan^8 x sec^4 x"d"x`
Evaluate the following:
`int ("d"x)/(1 + cos x)`
Evaluate the following:
`int tan^2x sec^4 x"d"x`
Evaluate the following:
`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`
Evaluate the following:
`int (cosx - cos2x)/(1 - cosx) "d"x`
Evaluate the following:
`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`
Evaluate the following:
`int sin^-1 sqrt(x/("a" + x)) "d"x` (Hint: Put x = a tan2θ)
`int sinx/(3 + 4cos^2x) "d"x` = ______.
The value of the integral `int_(1/3)^1 (x - x^3)^(1/3)/x^4 dx` is
`int (cos^2x)/(sin x + cos x)^2 dx` is equal to