Advertisements
Advertisements
प्रश्न
Find: `int sin^-1 (2x) dx.`
उत्तर
`int sin^-1 (2x) dx`
Using ILATE rule
`x sin^-1 2x - int (2x)/sqrt(1-4x^2)dx`
`x sin^-1 2x + 1/4 int (-8x)/sqrt(1-4x^2) dx`
Taking 1 - 4x2 = t
⇒ - 8x dx = dt
`x sin^-1 2x + 1/4 int dt/sqrt(t)`
`x sin^-1 2x + 1/4 (2t 1/2)/1 + "C"`
= `x sin^-1 2x + (t 1/2)/2 + "C"`
= `x sin^-1 2x + sqrt(1-4x^2)/2 + "C"`
APPEARS IN
संबंधित प्रश्न
Evaluate : `intsin(x-a)/sin(x+a)dx`
Find the integrals of the function:
sin 3x cos 4x
Find the integrals of the function:
cos 2x cos 4x cos 6x
Find the integrals of the function:
sin3 (2x + 1)
Find the integrals of the function:
sin3 x cos3 x
Find the integrals of the function:
sin4 x
Find the integrals of the function:
cos4 2x
Find the integrals of the function:
`(cos 2x - cos 2 alpha)/(cos x - cos alpha)`
Find the integrals of the function:
tan4x
Find the integrals of the function:
`(sin^3 x + cos^3 x)/(sin^2x cos^2 x)`
Find the integrals of the function:
`(cos 2x+ 2sin^2x)/(cos^2 x)`
Find the integrals of the function:
sin−1 (cos x)
`int (sin^2x - cos^2 x)/(sin^2 x cos^2 x) dx` is equal to ______.
Find `int (sin^2 x - cos^2x)/(sin x cos x) dx`
Find `int dx/(x^2 + 4x + 8)`
Evaluate `int_0^pi (x sin x)/(1 + cos^2 x) dx`
Evaluate `int_0^(3/2) |x sin pix|dx`
Find `int (2x)/((x^2 + 1)(x^4 + 4))`dx
Find the area of the triangle whose vertices are (-1, 1), (0, 5) and (3, 2), using integration.
Find: `int_ (cos"x")/((1 + sin "x") (2+ sin"x")) "dx"`
Find:
`int"dx"/sqrt(5-4"x" - 2"x"^2)`
Find: `intsqrt(1 - sin 2x) dx, pi/4 < x < pi/2`
Evaluate `int tan^8 x sec^4 x"d"x`
Find `int "dx"/(2sin^2x + 5cos^2x)`
Evaluate the following:
`int sin^-1 sqrt(x/("a" + x)) "d"x` (Hint: Put x = a tan2θ)
`int (cos^2x)/(sin x + cos x)^2 dx` is equal to