Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`
उत्तर
Let I = `int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`
Put `tan^-1x` = t
⇒ `1/(1 + x^2) * "d"x` = dt
= `int "e"^"t" (1 + tan "t" + tan^2 "t")"dt"`
= `int "e"^"t" (sec^2 "t" + tan "t")"dt"`
Here f(t) = tan t
∴ f'(t) = sec2t
= `"e"^"t" * "f"("t")`
= `"e"^"t" tan "t"`
= `"e"^(tan^-1x) * x + "c"` ....`[because int "e"^x ["f"(x) + "f'"(x)]"d"x = "e"^2"f"(x) + "C"]`
Hence, I = `"e"^(tan^-1x) * x + "C"`.
APPEARS IN
संबंधित प्रश्न
Evaluate :`int_(pi/6)^(pi/3) dx/(1+sqrtcotx)`
Evaluate : `intsin(x-a)/sin(x+a)dx`
Find the integrals of the function:
cos 2x cos 4x cos 6x
Find the integrals of the function:
sin3 (2x + 1)
Find the integrals of the function:
sin 4x sin 8x
Find the integrals of the function:
`(1-cosx)/(1 + cos x)`
Find the integrals of the function:
`cos x/(1 + cos x)`
Find the integrals of the function:
sin4 x
Find the integrals of the function:
cos4 2x
Find the integrals of the function:
tan3 2x sec 2x
Find the integrals of the function:
`1/(sin xcos^3 x)`
Find the integrals of the function:
sin−1 (cos x)
Find `int (sin^2 x - cos^2x)/(sin x cos x) dx`
Find `int((3 sin x - 2) cos x)/(13 - cos^2 x- 7 sin x) dx`
Evaluate : \[\int\limits_0^\pi \frac{x \tan x}{\sec x \cdot cosec x}dx\] .
Find `int_ (sin "x" - cos "x" )/sqrt(1 + sin 2"x") d"x", 0 < "x" < π / 2 `
Find `int_ sin ("x" - a)/(sin ("x" + a )) d"x"`
Find the area of the triangle whose vertices are (-1, 1), (0, 5) and (3, 2), using integration.
Find: `int_ (cos"x")/((1 + sin "x") (2+ sin"x")) "dx"`
Find:
`int"dx"/sqrt(5-4"x" - 2"x"^2)`
Find: `int sec^2 x /sqrt(tan^2 x+4) dx.`
Find: `intsqrt(1 - sin 2x) dx, pi/4 < x < pi/2`
Find: `int sin^-1 (2x) dx.`
Evaluate `int tan^8 x sec^4 x"d"x`
Find `int "dx"/(2sin^2x + 5cos^2x)`
Find `int x^2tan^-1x"d"x`
`int "dx"/(sin^2x cos^2x)` is equal to ______.