Advertisements
Advertisements
प्रश्न
`int "dx"/(sin^2x cos^2x)` is equal to ______.
पर्याय
tanx + cotx + C
x + cotx)2 + C
tanx – cotx + C
(tanx – cotx)2 + C
उत्तर
`int "dx"/(sin^2x cos^2x)` is equal to tanx – cotx + C.
Explanation:
I = `int ("d"x)/(sin^2x cos^2x)`
= `int ((sin^2x + cos^2x)"d"x)/(sin^2xcos^2x)`
= `int sec^2 x"d"x + int "cosec"^2x "d"x`
= tanx – cotx + C
APPEARS IN
संबंधित प्रश्न
Find the integrals of the function:
cos 2x cos 4x cos 6x
Find the integrals of the function:
sin 4x sin 8x
Find the integrals of the function:
`(cos 2x - cos 2 alpha)/(cos x - cos alpha)`
Find the integrals of the function:
`(cos x - sinx)/(1+sin 2x)`
Find the integrals of the function:
tan3 2x sec 2x
Find the integrals of the function:
tan4x
Find the integrals of the function:
`(sin^3 x + cos^3 x)/(sin^2x cos^2 x)`
Find the integrals of the function:
`1/(cos(x - a) cos(x - b))`
`int (sin^2x - cos^2 x)/(sin^2 x cos^2 x) dx` is equal to ______.
`int (e^x(1 +x))/cos^2(e^x x) dx` equals ______.
Differentiate : \[\tan^{- 1} \left( \frac{1 + \cos x}{\sin x} \right)\] with respect to x .
Evaluate : \[\int\limits_0^\pi \frac{x \tan x}{\sec x \cdot cosec x}dx\] .
Find `int_ sin ("x" - a)/(sin ("x" + a )) d"x"`
Find `int_ (sin2"x")/((sin^2 "x"+1)(sin^2"x"+3))d"x"`
Find: `int sec^2 x /sqrt(tan^2 x+4) dx.`
Find: `intsqrt(1 - sin 2x) dx, pi/4 < x < pi/2`
Find `int "dx"/(2sin^2x + 5cos^2x)`
Find `int x^2tan^-1x"d"x`
`int (sin^6x)/(cos^8x) "d"x` = ______.
Evaluate the following:
`int ((1 + cosx))/(x + sinx) "d"x`
Evaluate the following:
`int ("d"x)/(1 + cos x)`
Evaluate the following:
`int tan^2x sec^4 x"d"x`
Evaluate the following:
`int (sin^6x + cos^6x)/(sin^2x cos^2x) "d"x`
Evaluate the following:
`int (cosx - cos2x)/(1 - cosx) "d"x`
`int (x + sinx)/(1 + cosx) "d"x` is equal to ______.
`int sinx/(3 + 4cos^2x) "d"x` = ______.
`int (cos^2x)/(sin x + cos x)^2 dx` is equal to