Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int (sin^6x + cos^6x)/(sin^2x cos^2x) "d"x`
उत्तर
Let I = `int (sin^6x + cos^6x)/(sin^2x * cos^2x) "d"x`
= `int ((sin^2x)^3 + (cos^2x)^3)/(sin^2x * cos^2x) "d"x`
= `int ((sin^2x + cos^2x)^3 - 3sin^2x cos^2x(sin^2x + cos^2x))/(sin^2x * cos^2x) "d"x` ......[∵ a3 + b3 = (a + b)3 – 3ab(a + b)]
= `int ((1)^3 - 3sin^2x cos^2x * (1))/(sin^2x cos^2x) "d"x`
= `int (1 - 3sin^2x cos^2x)/(sin^2x cos^2x) "d"x`
= `int (1/(sin^2x cos^2x) - (3sin^2x cos^2x)/(sin^2x cos^2x)) "d"x`
= `int (1/(sin^2x + cos^2x) - 3)"d"x`
= `int ((sin^2x + cos^2x)/(sin^2x cos^2x) - 3) "d"x`
= `int [(1/(cos^2x) + 1/(sin^2x)) - 3]"d"x`
= `int (sec^2x + "cosec"^2x - 3) "d"x`
= `int sec^2x "d"x + int "cosec"^2x "d"x - 3 int 1"d"x`
= tan x – cot x – 3x + C
Hence, I = tan x – cot x – 3x + C.
APPEARS IN
संबंधित प्रश्न
Find the integrals of the function:
cos 2x cos 4x cos 6x
Find the integrals of the function:
sin3 (2x + 1)
Find the integrals of the function:
sin3 x cos3 x
Find the integrals of the function:
`(1-cosx)/(1 + cos x)`
Find the integrals of the function:
`cos x/(1 + cos x)`
Find the integrals of the function:
`(sin^2 x)/(1 + cos x)`
Find the integrals of the function:
tan3 2x sec 2x
Find the integrals of the function:
`(cos 2x)/(cos x + sin x)^2`
Find the integrals of the function:
`1/(cos(x - a) cos(x - b))`
`int (e^x(1 +x))/cos^2(e^x x) dx` equals ______.
Find `int dx/(x^2 + 4x + 8)`
Find `int (2x)/((x^2 + 1)(x^4 + 4))`dx
Find `int_ sin ("x" - a)/(sin ("x" + a )) d"x"`
Find `int_ (log "x")^2 d"x"`
Find: `int_ (cos"x")/((1 + sin "x") (2+ sin"x")) "dx"`
Find:
`int"dx"/sqrt(5-4"x" - 2"x"^2)`
Find: `intsqrt(1 - sin 2x) dx, pi/4 < x < pi/2`
Find: `int sin^-1 (2x) dx.`
Evaluate `int tan^8 x sec^4 x"d"x`
`int "e"^x (cosx - sinx)"d"x` is equal to ______.
`int "dx"/(sin^2x cos^2x)` is equal to ______.
Evaluate the following:
`int ((1 + cosx))/(x + sinx) "d"x`
Evaluate the following:
`int ("d"x)/(1 + cos x)`
Evaluate the following:
`int sqrt(1 + sinx)"d"x`
Evaluate the following:
`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`
`int (x + sinx)/(1 + cosx) "d"x` is equal to ______.
`int sinx/(3 + 4cos^2x) "d"x` = ______.