मराठी

Evaluate the following: d∫sin6x+cos6xsin2xcos2xdx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`int (sin^6x + cos^6x)/(sin^2x cos^2x) "d"x`

बेरीज

उत्तर

Let I = `int (sin^6x + cos^6x)/(sin^2x * cos^2x) "d"x`

= `int ((sin^2x)^3 + (cos^2x)^3)/(sin^2x * cos^2x) "d"x`

= `int ((sin^2x + cos^2x)^3 - 3sin^2x cos^2x(sin^2x + cos^2x))/(sin^2x * cos^2x) "d"x` ......[∵ a3 + b3 = (a + b)3 – 3ab(a + b)]

= `int ((1)^3 - 3sin^2x cos^2x * (1))/(sin^2x cos^2x) "d"x`

= `int (1 - 3sin^2x cos^2x)/(sin^2x cos^2x) "d"x`

= `int (1/(sin^2x cos^2x) - (3sin^2x cos^2x)/(sin^2x cos^2x)) "d"x`

= `int (1/(sin^2x + cos^2x) - 3)"d"x`

= `int ((sin^2x + cos^2x)/(sin^2x cos^2x) - 3) "d"x`

= `int [(1/(cos^2x) + 1/(sin^2x)) - 3]"d"x`

= `int (sec^2x + "cosec"^2x - 3) "d"x`

= `int sec^2x "d"x + int "cosec"^2x "d"x - 3 int 1"d"x`

= tan x – cot x – 3x + C

Hence, I = tan x – cot x – 3x + C.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise [पृष्ठ १६४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 7 Integrals
Exercise | Q 23 | पृष्ठ १६४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×