Advertisements
Advertisements
प्रश्न
Form the differential equation from the following primitive where constants are arbitrary:
xy = a2
उत्तर
The equation of family of curves is \[xy = a^2\] ...(1)
where a is an arbitrary constant.
This equation contains only one arbitrary constant, so we shall get a differential equation of first order.
Differentiating equation (1) with respect to x, we get
\[y + x\frac{dy}{dx} = 0\]
It is the required differential equation.
APPEARS IN
संबंधित प्रश्न
Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.
Form the differential equation of the family of ellipses having foci on y-axis and centre at origin.
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at origin.
Form the differential equation of the family of circles having centre on y-axis and radius 3 units.
Form the differential equation representing the family of curves given by (x – a)2 + 2y2 = a2, where a is an arbitrary constant.
Form the differential equation of the family of circles in the first quadrant which touch the coordinate axes.
For the curve y = 5x – 2x3, if x increases at the rate of 2 units/sec, then find the rate of change of the slope of the curve when x = 3
Show that the family of curves for which `dy/dx = (x^2+y^2)/(2x^2)` is given by x2 - y2 = cx
Form the differential equation from the following primitive where constants are arbitrary:
y2 = 4ax
Form the differential equation from the following primitive where constants are arbitrary:
y = ax2 + bx + c
Form the differential equation corresponding to y2 − 2ay + x2 = a2 by eliminating a.
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Show that y = bex + ce2x is a solution of the differential equation, \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0\]
Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x\]
For the differential equation xy \[\frac{dy}{dx}\] = (x + 2) (y + 2). Find the solution curve passing through the point (1, −1).
Find one-parameter families of solution curves of the following differential equation:-
\[\frac{dy}{dx} + 3y = e^{mx}\], m is a given real number.
Find one-parameter families of solution curves of the following differential equation:-
\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x}\]
Find one-parameter families of solution curves of the following differential equation:-
\[\frac{dy}{dx} - \frac{2xy}{1 + x^2} = x^2 + 2\]
Find one-parameter families of solution curves of the following differential equation:-
\[\left( x + y \right)\frac{dy}{dx} = 1\]
Find one-parameter families of solution curves of the following differential equation:-
\[x \log x\frac{dy}{dx} + y = 2 \log x\]
The differential equation which represents the family of curves y = eCx is
Form the differential equation of the family of ellipses having foci on y-axis and centre at the origin.
Find the area of the region bounded by the curves (x -1)2 + y2 = 1 and x2 + y2 = 1, using integration.
Form the differential equation representing the family of curves y = e2x (a + bx), where 'a' and 'b' are arbitrary constants.
Find the differential equation of the family of curves y = Ae2x + B.e–2x.
Find the equation of a curve passing through the point (1, 1) if the perpendicular distance of the origin from the normal at any point P(x, y) of the curve is equal to the distance of P from the x-axis.
The differential equation representing the family of curves y = A sinx + B cosx is ______.
Form the differential equation of all circles which pass through origin and whose centres lie on y-axis.
Form the differential equation by eliminating A and B in Ax2 + By2 = 1
Family y = Ax + A3 of curves will correspond to a differential equation of order ______.
The curve for which the slope of the tangent at any point is equal to the ratio of the abcissa to the ordinate of the point is ______.
The differential equation representing the family of circles x2 + (y – a)2 = a2 will be of order two.
Differential equation representing the family of curves y = ex (Acosx + Bsinx) is `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + 2y` = 0
Form the differential equation of family of circles having centre on y-axis and raduis 3 units