हिंदी

Which of the Following Differential Equation Has Y = X as One of Its Particular Solution? - Mathematics

Advertisements
Advertisements

प्रश्न

Which of the following differential equation has y = x as one of its particular solution?

A. `(d^2y)/(dx^2) - x^2 (dy)/(dx) + xy = x`

B. `(d^2y)/(dx^2) + x dy/dx + xy = x`

C. `(d^2y)/(dx^2) - x^2 dy/dx + xy = 0`

D. `(d^2y)/(dx^2) + x dy/dx + xy = 0`

 

 

 

उत्तर

The given equation of curve is y = x.

Differentiating with respect to x, we get:

Hence, the correct answer is C.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Equations - Exercise 9.3 [पृष्ठ ३९१]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 9 Differential Equations
Exercise 9.3 | Q 12 | पृष्ठ ३९१

संबंधित प्रश्न

Form the differential equation of the family of ellipses having foci on y-axis and centre at origin.


Form the differential equation of the family of hyperbolas having foci on x-axis and centre at origin.


Form the differential equation representing the family of curves given by (x – a)2 + 2y2 = a2, where a is an arbitrary constant.


Form the differential equation from the following primitive where constants are arbitrary:
y2 = 4ax


Form the differential equation from the following primitive where constants are arbitrary:
xy = a2


Form the differential equation from the following primitive where constants are arbitrary:
y = ax2 + bx + c


Find the differential equation of the family of curves y = Ae2x + Be−2x, where A and B are arbitrary constants.


Form the differential equation corresponding to (x − a)2 + (y − b)2 = r2 by eliminating a and b.


Form the differential equation of the family of curves represented by the equation (a being the parameter):
 (x − a)2 + 2y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 − y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4ax


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
(x − a)2 − y2 = 1


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):

\[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\]

 


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4a (x − b)

 


For the differential equation xy \[\frac{dy}{dx}\] = (x + 2) (y + 2). Find the solution curve passing through the point (1, −1).


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} - y = \cos 2x\]


Find one-parameter families of solution curves of the following differential equation:-

\[x\frac{dy}{dx} + y = x^4\]


Find one-parameter families of solution curves of the following differential equation:-

\[\left( x \log x \right)\frac{dy}{dx} + y = \log x\]


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} - \frac{2xy}{1 + x^2} = x^2 + 2\]


Find one-parameter families of solution curves of the following differential equation:-

\[x \log x\frac{dy}{dx} + y = 2 \log x\]


Write the differential equation representing family of curves y = mx, where m is arbitrary constant.


The differential equation which represents the family of curves y = eCx is


Form the differential equation representing the family of curves `y2 = m(a2 - x2) by eliminating the arbitrary constants 'm' and 'a'. 


Form the differential equation representing the family of curves y = A sin x, by eliminating the arbitrary constant A.


Find the differential equation of the family of curves y = Ae2x + B.e–2x.


The differential equation representing the family of curves y = A sinx + B cosx is ______.


Form the differential equation by eliminating A and B in Ax2 + By2 = 1


Find the differential equation of system of concentric circles with centre (1, 2).


Family y = Ax + A3 of curves is represented by the differential equation of degree ______.


The differential equation `y ("d"y)/("d"x) + "c"` represents: ______.


Family y = Ax + A3 of curves will correspond to a differential equation of order ______.


The differential equation of the family of curves y2 = 4a(x + a) is ______.


Differential equation representing the family of curves y = ex (Acosx + Bsinx) is `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + 2y` = 0


Find the equation of the curve at every point of which the tangent line has a slope of 2x:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×