हिंदी

Family y = Ax + A3 of curves will correspond to a differential equation of order ______. - Mathematics

Advertisements
Advertisements

प्रश्न

Family y = Ax + A3 of curves will correspond to a differential equation of order ______.

विकल्प

  • 3

  • 2

  • 1

  • Not defined

MCQ
रिक्त स्थान भरें

उत्तर

Family y = Ax + A3 of curves will correspond to a differential equation of order 2.

Explanation:

The given equation is y = Ax + A3

Differentiating both sides, we get `("d"y)/("d"x)` = A

Again differentiating both sides,

We have `("d"^2y)/("d"x^2)` = 0

So the order of the differential equation is 2.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Equations - Exercise [पृष्ठ १९९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 9 Differential Equations
Exercise | Q 60 | पृष्ठ १९९

संबंधित प्रश्न

Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.


Form the differential equation corresponding to y = emx by eliminating m.


Form the differential equation from the following primitive where constants are arbitrary:
y2 = 4ax


Form the differential equation corresponding to y2 = a (b − x2) by eliminating a and b.


Form the differential equation corresponding to (x − a)2 + (y − b)2 = r2 by eliminating a and b.


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4ax


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
(x − a)2 − y2 = 1


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y = ax3


Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Show that y = bex + ce2x is a solution of the differential equation, \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0\]


Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x\]


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} - y = \cos 2x\]


Find one-parameter families of solution curves of the following differential equation:-

\[x\frac{dy}{dx} + y = x^4\]


Find one-parameter families of solution curves of the following differential equation:-

\[\left( x + y \right)\frac{dy}{dx} = 1\]


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} \cos^2 x = \tan x - y\]


Find one-parameter families of solution curves of the following differential equation:-

\[e^{- y} \sec^2 y dy = dx + x dy\]


Write the differential equation representing family of curves y = mx, where m is arbitrary constant.


The differential equation which represents the family of curves y = eCx is


Find the differential equation of the family of curves y = Ae2x + B.e–2x.


Find the equation of a curve passing through the point (1, 1) if the perpendicular distance of the origin from the normal at any point P(x, y) of the curve is equal to the distance of P from the x-axis.


The differential equation representing the family of curves y = A sinx + B cosx is ______.


Find the equation of a curve passing through (2, 1) if the slope of the tangent to the curve at any point (x, y) is `(x^2 + y^2)/(2xy)`.


Find the equation of a curve passing through origin if the slope of the tangent to the curve at any point (x, y) is equal to the square of the difference of the abcissa and ordinate of the point.


The differential equation `y ("d"y)/("d"x) + "c"` represents: ______.


The differential equation representing the family of circles x2 + (y – a)2 = a2 will be of order two.


Differential equation representing the family of curves y = ex (Acosx + Bsinx) is `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + 2y` = 0


Find the equation of the curve at every point of which the tangent line has a slope of 2x:


Form the differential equation of family of circles having centre on y-axis and raduis 3 units


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×