हिंदी

Differential equation representing the family of curves y = ex (Acosx + Bsinx) is ddddd2ydx2-2dydx+2y = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Differential equation representing the family of curves y = ex (Acosx + Bsinx) is `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + 2y` = 0

विकल्प

  • True

  • False

MCQ
सत्य या असत्य

उत्तर

This statement is True.

Explanation:

Given equation is y = ex (Acosx + Bsinx) 

Differentiating both sides, we get

`("d"y)/("d"x)` = ex (–A sin x + B cos x) + (A cos x + B sin x) ex

`("d"y)/("d"x)` = ex (–A sin x + B cos x) + y

Again differentiating w.r.t. x, we get

`("d"^2y)/("d"x^2) = "e"^x (-"A" cosx - "B" sinx) + (-"A" sinx + "B"cosx) . "e"^x + ("d"y)/("d"x)`

 `("d"^2y)/("d"x^2) = "e"^x ("A" cos x + "B" sin x) + ("d"y)/("d"x) - y + ("d"y)/("d"x)`

`("d"^2y)/("d"x^2) = - y + y + 2("d"y)/("d"x)`

∴ `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + 2y` = 0

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Equations - Exercise [पृष्ठ २०३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 9 Differential Equations
Exercise | Q 77.(viii) | पृष्ठ २०३

संबंधित प्रश्न

Form the differential equation of the family of ellipses having foci on y-axis and centre at origin.


For the curve y = 5x – 2x3, if x increases at the rate of 2 units/sec, then find the rate of change of the slope of the curve when x = 3


Form the differential equation from the following primitive where constants are arbitrary:
y = cx + 2c2 + c3


Form the differential equation from the following primitive where constants are arbitrary:
y = ax2 + bx + c


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):

\[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\]

 


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4a (x − b)

 


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + y2 = ax3


Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x\]


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} \cos^2 x = \tan x - y\]


Find one-parameter families of solution curves of the following differential equation:-

\[e^{- y} \sec^2 y dy = dx + x dy\]


Find one-parameter families of solution curves of the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 \log x\]


Write the differential equation representing family of curves y = mx, where m is arbitrary constant.


The differential equation which represents the family of curves y = eCx is


The family of curves in which the sub tangent at any point of a curve is double the abscissae, is given by


Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.


Find the area of the region bounded by the curves (x -1)2 + y2 = 1 and x2 + y2 = 1, using integration.


Form the differential equation representing the family of curves y = A sin x, by eliminating the arbitrary constant A.


Find the differential equation of the family of lines through the origin.


The differential equation representing the family of curves y = A sinx + B cosx is ______.


Find the equation of a curve passing through (2, 1) if the slope of the tangent to the curve at any point (x, y) is `(x^2 + y^2)/(2xy)`.


Find the equation of the curve through the point (1, 0) if the slope of the tangent to the curve at any point (x, y) is `(y - 1)/(x^2 + x)`


Find the equation of a curve passing through the point (1, 1). If the tangent drawn at any point P(x, y) on the curve meets the co-ordinate axes at A and B such that P is the mid-point of AB.


Family y = Ax + A3 of curves will correspond to a differential equation of order ______.


The differential equation of the family of curves y2 = 4a(x + a) is ______.


Form the differential equation of the family of hyperbola having foci on x-axis and centre at origin.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×