Advertisements
Advertisements
प्रश्न
Find one-parameter families of solution curves of the following differential equation:-
\[\left( x \log x \right)\frac{dy}{dx} + y = \log x\]
Solve the following differential equation:-
\[\left( x \log x \right)\frac{dy}{dx} + y = \log x\]
उत्तर
We have,
\[\left( x \log x \right)\frac{dy}{dx} + y = \log x\]
Dividing both sides by x \log x, we get
\[\frac{dy}{dx} + \frac{y}{x \log x} = \frac{\log x}{x \log x}\]
\[ \Rightarrow \frac{dy}{dx} + \frac{y}{x \log x} = \frac{1}{x}\]
\[ \Rightarrow \frac{dy}{dx} + \left( \frac{1}{x \log x} \right)y = \frac{1}{x}\]
\[\text{Comparing with }\frac{dy}{dx} + Py = Q,\text{ we get }\]
\[P = \frac{1}{x \log x} \]
\[Q = \frac{1}{x}\]
Now,
\[I . F . = e^{\int P dx} = e^{\int\frac{1}{x \log x}dx} \]
\[ = e^{log\left( \log x \right)} \]
\[ = \log x\]
So, the solution is given by
\[y \times I.F. = \int Q \times I.F. dx + C\]
\[ \Rightarrow y \log x = \int\frac{1}{x} \times \log x\ dx + C\]
\[ \Rightarrow y \log x = \frac{\left( \log x \right)^2}{2} + C\]
\[ \Rightarrow y = \frac{1}{2}\log x + \frac{C}{\log x}\]
APPEARS IN
संबंधित प्रश्न
Form the differential equation of the family of circles touching the y-axis at the origin.
Form the differential equation of the family of circles in the first quadrant which touch the coordinate axes.
Show that the family of curves for which `dy/dx = (x^2+y^2)/(2x^2)` is given by x2 - y2 = cx
Form the differential equation of the family of curves represented by y2 = (x − c)3.
Form the differential equation corresponding to y = emx by eliminating m.
Form the differential equation from the following primitive where constants are arbitrary:
y2 = 4ax
Form the differential equation from the following primitive where constants are arbitrary:
y = ax2 + bx + c
Find the differential equation of the family of curves, x = A cos nt + B sin nt, where A and B are arbitrary constants.
Form the differential equation corresponding to y2 = a (b − x2) by eliminating a and b.
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 − y2 = a2
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
Show that y = bex + ce2x is a solution of the differential equation, \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0\]
Find one-parameter families of solution curves of the following differential equation:-
\[\frac{dy}{dx} + 3y = e^{mx}\], m is a given real number.
Find one-parameter families of solution curves of the following differential equation:-
\[\frac{dy}{dx} - y = \cos 2x\]
Find one-parameter families of solution curves of the following differential equation:-
\[x\frac{dy}{dx} + y = x^4\]
Find one-parameter families of solution curves of the following differential equation:-
\[\frac{dy}{dx} + y \cos x = e^{\sin x} \cos x\]
Write the order of the differential equation representing the family of curves y = ax + a3.
Form the differential equation of the family of ellipses having foci on y-axis and centre at the origin.
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.
Form the differential equation representing the family of curves `y2 = m(a2 - x2) by eliminating the arbitrary constants 'm' and 'a'.
Form the differential equation representing the family of curves y = A sin x, by eliminating the arbitrary constant A.
Find the differential equation of the family of curves y = Ae2x + B.e–2x.
Find the differential equation of the family of lines through the origin.
The differential equation representing the family of curves y = A sinx + B cosx is ______.
Find the equation of the curve through the point (1, 0) if the slope of the tangent to the curve at any point (x, y) is `(y - 1)/(x^2 + x)`
Find the equation of a curve passing through the point (1, 1). If the tangent drawn at any point P(x, y) on the curve meets the co-ordinate axes at A and B such that P is the mid-point of AB.
Family y = Ax + A3 of curves is represented by the differential equation of degree ______.
The differential equation of the family of curves x2 + y2 – 2ay = 0, where a is arbitrary constant, is ______.
Family y = Ax + A3 of curves will correspond to a differential equation of order ______.
The curve for which the slope of the tangent at any point is equal to the ratio of the abcissa to the ordinate of the point is ______.
The differential equation of the family of curves y2 = 4a(x + a) is ______.
The differential equation representing the family of circles x2 + (y – a)2 = a2 will be of order two.
Find the equation of the curve at every point of which the tangent line has a slope of 2x:
Form the differential equation of family of circles having centre on y-axis and raduis 3 units