Advertisements
Advertisements
प्रश्न
Form the differential equation of the family of curves represented by y2 = (x − c)3.
उत्तर
The equation of the family of curves is \[y^2 = \left( x - c \right)^3\] ...(1)
where \[c \in R\] is a parameter.
This equation contains only one parameter, so we shall obtain a differential equation of first order.
Differentiating equation (1) with respect to \[x\] , we get
\[\frac{y^2}{2y\frac{dy}{dx}} = \frac{\left( x - c \right)^3}{3 \left( x - c \right)^2}\]
\[ \Rightarrow \frac{y}{2\frac{dy}{dx}} = \frac{\left( x - c \right)}{3}\]
\[ \Rightarrow \frac{3y}{2\frac{dy}{dx}} = x - c\]
\[ \Rightarrow c = x - \frac{3y}{2\frac{dy}{dx}}\]
Substituting the value of \[c\] in equation (1), we get
\[y^2 = \left( x - x + \frac{3y}{2\frac{dy}{dx}} \right)^3 \]
\[ \Rightarrow y^2 = \frac{27 y^3}{8 \left( \frac{dy}{dx} \right)^3}\]
\[ \Rightarrow 8 y^2 \left( \frac{dy}{dx} \right)^3 = 27 y^3 \]
\[ \Rightarrow 8 \left( \frac{dy}{dx} \right)^3 - 27y = 0\]
It is the required differential equation.
APPEARS IN
संबंधित प्रश्न
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at origin.
Form the differential equation of the family of circles having centre on y-axis and radius 3 units.
Which of the following differential equations has y = c1 ex + c2 e–x as the general solution?
(A) `(d^2y)/(dx^2) + y = 0`
(B) `(d^2y)/(dx^2) - y = 0`
(C) `(d^2y)/(dx^2) + 1 = 0`
(D) `(d^2y)/(dx^2) - 1 = 0`
Which of the following differential equation has y = x as one of its particular solution?
A. `(d^2y)/(dx^2) - x^2 (dy)/(dx) + xy = x`
B. `(d^2y)/(dx^2) + x dy/dx + xy = x`
C. `(d^2y)/(dx^2) - x^2 dy/dx + xy = 0`
D. `(d^2y)/(dx^2) + x dy/dx + xy = 0`
For the curve y = 5x – 2x3, if x increases at the rate of 2 units/sec, then find the rate of change of the slope of the curve when x = 3
Show that the family of curves for which `dy/dx = (x^2+y^2)/(2x^2)` is given by x2 - y2 = cx
Form the differential equation from the following primitive where constants are arbitrary:
y2 = 4ax
Form the differential equation from the following primitive where constants are arbitrary:
y = ax2 + bx + c
Form the differential equation corresponding to (x − a)2 + (y − b)2 = r2 by eliminating a and b.
Form the differential equation of the family of curves represented by the equation (a being the parameter):
(x − a)2 + 2y2 = a2
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 − y2 = a2
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4a (x − b)
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + y2 = ax3
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y = eax
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
For the differential equation xy \[\frac{dy}{dx}\] = (x + 2) (y + 2). Find the solution curve passing through the point (1, −1).
Find one-parameter families of solution curves of the following differential equation:-
\[\frac{dy}{dx} - y = \cos 2x\]
The family of curves in which the sub tangent at any point of a curve is double the abscissae, is given by
Form the differential equation representing the family of curves y = A sin x, by eliminating the arbitrary constant A.
Find the differential equation of the family of curves y = Ae2x + B.e–2x.
Find the equation of a curve whose tangent at any point on it, different from origin, has slope `y + y/x`.
Form the differential equation of all circles which pass through origin and whose centres lie on y-axis.
Find the equation of a curve passing through (2, 1) if the slope of the tangent to the curve at any point (x, y) is `(x^2 + y^2)/(2xy)`.
Find the equation of the curve through the point (1, 0) if the slope of the tangent to the curve at any point (x, y) is `(y - 1)/(x^2 + x)`
Find the equation of a curve passing through origin if the slope of the tangent to the curve at any point (x, y) is equal to the square of the difference of the abcissa and ordinate of the point.
Family y = Ax + A3 of curves is represented by the differential equation of degree ______.
The differential equation of the family of curves x2 + y2 – 2ay = 0, where a is arbitrary constant, is ______.
Find the equation of the curve at every point of which the tangent line has a slope of 2x:
The area above the x-axis and under the curve `y = sqrt(1/x - 1)` for `1/2 ≤ x ≤ 1` is:
Form the differential equation of family of circles having centre on y-axis and raduis 3 units