हिंदी

Form the differential equation of all circles which pass through origin and whose centres lie on y-axis. - Mathematics

Advertisements
Advertisements

प्रश्न

Form the differential equation of all circles which pass through origin and whose centres lie on y-axis.

योग

उत्तर


Equation of circle which passes through the origin and whose centre lies on y-axis is

(x – 0)2 + (y – a)2 = a2

⇒ x2 + y2 + a2 – 2ay = a2

⇒ x2 + y2 – 2ay = 0   ......(i)

Differentiating both sides w.r.t. x we get

⇒ `2x + 2y * "dy"/"dx" - 2"a" * "dy"/"dx"` = 0

⇒ `x + y "dy"/"dx" - "a" * "dy"/"dx"` = 0

⇒ `x + (y - "a") * "dy"/"dx"` = 0

`y - "a" = x/("dy"/"dx")`

a = `y + (-x)/("dy"/"dx")`

Putting the value of a in equation (i), we get

`x^2 + y^2 - 2(y + x/("dy"/"dx"))y` = 0

⇒ `x^2 + y^2 - 2y^2 - (2xy)/("dy"/"dx")` = 0

⇒ `x^2 - y^2 = (2xy)/("dy"/"dx")`

∴ `(x^2 - y^2) "dy"/"dx" - 2xy` = 0

Hence, the required differential equation is `(x^2 - y^2) "dy"/"dx" - 2xy` = 0

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Equations - Exercise [पृष्ठ १९४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 9 Differential Equations
Exercise | Q 14 | पृष्ठ १९४

संबंधित प्रश्न

Form the differential equation of the family of circles touching the y-axis at the origin.


Form the differential equation of the family of hyperbolas having foci on x-axis and centre at origin.


Which of the following differential equation has y = x as one of its particular solution?

A. `(d^2y)/(dx^2) - x^2 (dy)/(dx) + xy = x`

B. `(d^2y)/(dx^2) + x dy/dx + xy = x`

C. `(d^2y)/(dx^2) - x^2 dy/dx + xy = 0`

D. `(d^2y)/(dx^2) + x dy/dx + xy = 0`

 

 

 


Form the differential equation of the family of circles in the first quadrant which touch the coordinate axes.


Form the differential equation of the family of curves represented by y2 = (x − c)3.


Form the differential equation from the following primitive where constants are arbitrary:
y2 = 4ax


Form the differential equation from the following primitive where constants are arbitrary:
xy = a2


Form the differential equation of the family of curves represented by the equation (a being the parameter):
(2x − a)2 − y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4ax


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + (y − b)2 = 1


Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x\]


Find one-parameter families of solution curves of the following differential equation:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x}\]


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} - \frac{2xy}{1 + x^2} = x^2 + 2\]


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} \cos^2 x = \tan x - y\]


Find one-parameter families of solution curves of the following differential equation:-

\[e^{- y} \sec^2 y dy = dx + x dy\]


The differential equation which represents the family of curves y = eCx is


Form the differential equation representing the family of curves y = mx, where m is an arbitrary constant.


Form the differential equation representing the family of curves y = e2x (a + bx), where 'a' and 'b' are arbitrary constants.


Form the differential equation representing the family of curves y = A sin x, by eliminating the arbitrary constant A.


Find the differential equation of the family of curves y = Ae2x + B.e–2x.


The differential equation representing the family of curves y = A sinx + B cosx is ______.


The differential equation `y ("d"y)/("d"x) + "c"` represents: ______.


The differential equation representing the family of circles x2 + (y – a)2 = a2 will be of order two.


Differential equation representing the family of curves y = ex (Acosx + Bsinx) is `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + 2y` = 0


From the differential equation of the family of circles touching the y-axis at origin


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×