Advertisements
Advertisements
प्रश्न
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.
उत्तर
The equation of the family of hyperbolas having the centre at the origin and foci on the x-axis is \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1............(1)\]
where \[a\text{ and }b\] are parameters.
As this equation contains two parameters, we shall get a second-order differential equation.
Differentiating equation (1) with respect to x, we get
\[\frac{2x}{a^2} - \frac{2y}{b^2}\frac{dy}{dx} =0..........(2)\]
Differentiating equation (2) with respect to x, we get
\[\frac{2}{a^2} - \frac{2}{b^2}\left[ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right] = 0\]
\[ \Rightarrow \frac{1}{a^2} = \frac{1}{b^2}\left[ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right]\]
\[ \Rightarrow \frac{b^2}{a^2} = \left[ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right] \left......( 3 \right)\]
Now, from equation (2), we get
\[\frac{2x}{a^2} = \frac{2y}{b^2}\frac{dy}{dx}\]
\[ \Rightarrow \frac{b^2}{a^2} = \frac{y}{x}\frac{dy}{dx} ........(4)\]
From (3) and (4), we get
\[\frac{y}{x}\frac{dy}{dx} = \left[ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right]\]
\[ \Rightarrow y\frac{dy}{dx} = xy\frac{d^2 y}{d x^2} + x \left( \frac{dy}{dx} \right)^2 \]
\[ \Rightarrow xy\frac{d^2 y}{d x^2} + x \left( \frac{dy}{dx} \right)^2 - y\frac{dy}{dx} = 0\]
It is the required differential equation.
APPEARS IN
संबंधित प्रश्न
Prove that:
`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`
Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]
Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x + y\frac{dy}{dx} = 0\]
|
\[y = \pm \sqrt{a^2 - x^2}\]
|
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]
Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]
The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.
Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\] and tangent at any point of which makes an angle tan−1 \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.
The tangent at any point (x, y) of a curve makes an angle tan−1(2x + 3y) with x-axis. Find the equation of the curve if it passes through (1, 2).
Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\] at any point (x, y) on it.
The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is
The solution of the differential equation y1 y3 = y22 is
Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .
y2 dx + (x2 − xy + y2) dy = 0
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = ex + 1 y'' − y' = 0
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
`y=sqrt(a^2-x^2)` `x+y(dy/dx)=0`
Form the differential equation representing the family of curves y = a sin (x + b), where a, b are arbitrary constant.
In each of the following examples, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = ex | `dy/ dx= y` |
For the following differential equation find the particular solution.
`(x + 1) dy/dx − 1 = 2e^(−y)`,
when y = 0, x = 1
Solve the following differential equation.
xdx + 2y dx = 0
Solve the following differential equation.
x2y dx − (x3 + y3 ) dy = 0
The solution of `dy/ dx` = 1 is ______
Choose the correct alternative.
The solution of `x dy/dx = y` log y is
State whether the following is True or False:
The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)
Solution: `("d"y)/("d"x)` = cos(x + y) ......(1)
Put `square`
∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`
∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`
∴ (1) becomes `"dv"/("d"x) - 1` = cos v
∴ `"dv"/("d"x)` = 1 + cos v
∴ `square` dv = dx
Integrating, we get
`int 1/(1 + cos "v") "d"v = int "d"x`
∴ `int 1/(2cos^2 ("v"/2)) "dv" = int "d"x`
∴ `1/2 int square "dv" = int "d"x`
∴ `1/2* (tan("v"/2))/(1/2)` = x + c
∴ `square` = x + c
The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.
Solve: ydx – xdy = x2ydx.