हिंदी

D 2 Y D X 2 + 4 Y = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{d^2 y}{d x^2} + 4y = 0\]
एक पंक्ति में उत्तर
योग

उत्तर

In this differential equation, the order of the highest order derivative is 2 and its power is 1. So, it is a differential equation of order 2 and degree 1.

It is a linear differential equation. 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.01 [पृष्ठ ४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.01 | Q 2 | पृष्ठ ४

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Prove that:

`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`


Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].

 


Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].


Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]


Verify that y = cx + 2c2 is a solution of the differential equation 

\[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0\].

Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex


\[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]

\[\frac{dy}{dx} = \left( e^x + 1 \right) y\]

xy (y + 1) dy = (x2 + 1) dx


\[\frac{dy}{dx} = \frac{e^x \left( \sin^2 x + \sin 2x \right)}{y\left( 2 \log y + 1 \right)}\]

\[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\]

Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]

 


\[\frac{dy}{dx} = y \tan x, y\left( 0 \right) = 1\]

\[\frac{dy}{dx} = 2 e^{2x} y^2 , y\left( 0 \right) = - 1\]

Solve the differential equation \[x\frac{dy}{dx} + \cot y = 0\] given that \[y = \frac{\pi}{4}\], when \[x=\sqrt{2}\]


\[\cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}\]

\[\frac{dy}{dx} = \frac{x + y}{x - y}\]

\[2xy\frac{dy}{dx} = x^2 + y^2\]

\[\left[ x\sqrt{x^2 + y^2} - y^2 \right] dx + xy\ dy = 0\]

Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]


In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?


If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?


Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\]  = x (x + 1) and passing through (1, 0).


The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.


The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting


Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = ex + 1            y'' − y' = 0


Solve the following differential equation.

`y^3 - dy/dx = x dy/dx`


For the following differential equation find the particular solution.

`(x + 1) dy/dx − 1 = 2e^(−y)`,

when y = 0, x = 1


y2 dx + (xy + x2)dy = 0


y dx – x dy + log x dx = 0


Select and write the correct alternative from the given option for the question

Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in


Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0


Choose the correct alternative:

Differential equation of the function c + 4yx = 0 is


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.


Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.


If `y = log_2 log_2(x)` then `(dy)/(dx)` =


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×