हिंदी

If the Interest is Compounded Continuously at 6% per Annum, How Much Worth Rs 1000 Will Be After 10 Years? How Long Will It Take to Double Rs 1000? - Mathematics

Advertisements
Advertisements

प्रश्न

If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?

योग

उत्तर

Let P0 be the initial amount and P be the amount at any time t. Then,
\[\frac{dP}{dt} = \frac{6P}{100}\]
\[ \Rightarrow \frac{dP}{dt} = 0 . 06P\]
\[\Rightarrow \frac{dP}{P} = 0 . 06dt \]
Integrating both sides with respect to t, we get
\[\log P = 0 . 06t + C\]
Now,
\[P = P_0\text{ at }t = 0 \]
\[ \therefore \log P_0 = 0 + C\]
\[ \Rightarrow C = \log P_0 \]
Putting the value of C, we get
\[\log P = 0 . 06t + \log P_0 \]
\[ \Rightarrow \log\frac{P}{P_0} = 0 . 06t\]
\[ \Rightarrow e^{0 . 06t} = \frac{P}{P_0}\]
To find the amount after 10 years, we get
\[ \Rightarrow e^{0 . 06 \times 10} = \frac{P}{P_0}\]
\[ \Rightarrow e^{0 . 6} = \frac{P}{P_0}\]
\[ \Rightarrow 1 . 822 = \frac{P}{P_0}\]
\[ \Rightarrow P = 1 . 822 P_0 \]
\[ \Rightarrow P = 1 . 822 \times 1000 =\text{ Rs. }1822\]
To find the time after which the amount will double, we have
\[P = 2 P_0 \]
\[ \therefore \log\frac{2 P_0}{P_0} = 0 . 06t\]
\[ \Rightarrow \log 2 = 0 . 06t\]
\[ \Rightarrow t = \frac{0 . 6931}{0 . 06} = 11 . 55\text{ years }\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.11 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.11 | Q 5 | पृष्ठ १३४

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega +  b omega^2) =  omega^2`


Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.


Show that the differential equation of which \[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\]  is a solution is \[\frac{dy}{dx} + 2xy = 4 x^3\]


Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x


\[\left( x - 1 \right)\frac{dy}{dx} = 2 xy\]

\[\frac{dy}{dx} = \frac{x e^x \log x + e^x}{x \cos y}\]

(1 − x2) dy + xy dx = xy2 dx


\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]


Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]


\[\frac{dy}{dx} = y \tan 2x, y\left( 0 \right) = 2\] 

\[\frac{dr}{dt} = - rt, r\left( 0 \right) = r_0\]

\[2x\frac{dy}{dx} = 5y, y\left( 1 \right) = 1\]

\[2\left( y + 3 \right) - xy\frac{dy}{dx} = 0\], y(1) = −2

\[\frac{dy}{dx} = \tan\left( x + y \right)\]

(x2 − y2) dx − 2xy dy = 0


y ex/y dx = (xex/y + y) dy


\[\left[ x\sqrt{x^2 + y^2} - y^2 \right] dx + xy\ dy = 0\]

Solve the following initial value problem:-

\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]


Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]


A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.


Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.


The x-intercept of the tangent line to a curve is equal to the ordinate of the point of contact. Find the particular curve through the point (1, 1).


Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is


The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is


The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

`y=sqrt(a^2-x^2)`              `x+y(dy/dx)=0`


Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0


Determine the order and degree of the following differential equations.

Solution D.E.
ax2 + by2 = 5 `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx`

Solve the following differential equation.

`dy /dx +(x-2 y)/ (2x- y)= 0`


Solve the following differential equation.

`dy/dx + 2xy = x`


A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.


Solve

`dy/dx + 2/ x y = x^2`


`xy dy/dx  = x^2 + 2y^2`


Solve the following differential equation y log y = `(log  y - x) ("d"y)/("d"x)`


Solve the following differential equation y2dx + (xy + x2) dy = 0


Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`


Solution of `x("d"y)/("d"x) = y + x tan  y/x` is `sin(y/x)` = cx


There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×